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Additional Computational methods
The calculation of electron density difference (EDD)

The charge transfer between Seg/Na,Se, and M,CO,/Zn-M,CO, hosts was
investigated by electron density difference (EDD). The EDD is expressed according to

the following equation

Ap = Phosts - Seg/Na,Se ~ Phosts ~ pSe8/NazSen (S1)

Phosts - Se8/NazSe

where n and Phosts | are the total charge density of the system with and

Pseg/Na,s

without Seg/Na,Se,, “n represents the charge density of Seg/Na,Se,,

respectively.

The calculation of Gibbs free energy change (AG) of SeRR on M,COyZn-M,CO,
surface.

Overall, the SeRR during the discharge of Na-Se batteries could be written as

following! 2

Total reaction Segt16(Na* + ¢’) — 8Na,Se AG

Each step involved in the generation is as follows:

Seg* + 2 (Na™ + e’) > Na,Seg™ AGI
Na,Seg* — Na,Seq* + 1/4 Seg AG2
Na,Ses* — Na,Se,™ + 1/4 Seg AG3
Na,Se,* — Na,Se,* + 1/4 Seg AG4
Na,Se,* — Na,Se* + 1/8 Seg AGS

“*> represents an active site on the catalytic substrate.
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The Gibbs free energy (AG) for each SeRR during the Na-Se discharge process is
calculated as

AG = AE + AEZPE -TAS (82)

Where AE, AEzpr and TAS denotes the changes of total energy, the zero-point energy
(ZPE) and entropic contribution, respectively. The ZPE and entropic contribution were

calculated from the vibrational frequencies, and a temperature of 298 K was used.
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Table S1. £, of Seg/Na,Se, on different M,CO, or Zn-M,CO, MXene.

Hosts Seg Na,Seqg Na,Se¢ Na,Sey Na,Se, Na,Se
Ti,CO, -1.274 -3.273 -2.327 -2.630 -2.994 -2.667
Nb,CO, -1.491 -2.426 -1.826 -2.557 -2.959 -3.230
Cr,CO, -1.798 -4.604 -4.174 -4.436 -5.301 -5.224
Zn-Ti,CO, -2.213 -3.919 -3.602 -4.102 -4.438 -5.168
Zn-Nb,CO,  -2.588 -4.228 -3.608 -3.984 -4.496 -5.281
Zn-Cr,CO, -3.033 -5.660 -4.335 -5.135 -5.790 -6.426

Table S2. AG (Gibbs free energy) for each step of the SeRR on M,CO,/Zn-M,CO,

hosts. The rate-limiting step of SeRR was write in bold.

Hosts AGI AG2 AG3 AG4 AGS
T1,CO, -3.835 1.287 -0.133 1.019 1.011
Nb,CO, -3.156 0.683 -0.058 0.893 0.551
Cr,CO, -4.853 0.414 0.463 0.430 0.866

Zn-T1,CO, -3.857 0.405 0.159 0.991 0.014
Zn-Nb,CO, -4.038 0.677 0.268 0.809 -0.013

Zn-Cr,CO, -4.784 -0.169 1.454 0.632 0.151
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Figure S1. The diffusion energy barrier of zinc atom on the MXene surface.
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Figure S2. Adsorption energies of Seg/Na,Se, adsorbed on EC/DMC electrolytes.
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Figure S3. Geometrical structures of Seg/Na,Se, adsorbed on (a) EC and (b) DMC

electrolytes.
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Figure S4. Geometrical structures and adsorption energies of Seg/Na,Se, interact with

(a) two EC molecules and (b) two DMC molecules.
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