Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Informations

Defect Properties and Solution Energies of Dopants in NASICON-Type LiGe₂(PO₄)₃ Solid Electrolyte: A First-

Principles Study

Anurup Das^{1,2}, Madhumita Goswami^{1,2} and P.S. Ghosh^{1,2,*}

¹Glass & Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400085, India ²Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

Fig. SI1: Optimized unit cell of LGP containing different kinds of Frenkel defects

Fig. SI2: Close observation on the structure with Li Frenkel defect

Table SI1: Defects formation energies (eV/defect) reported previously				
Li–TM antisite defects (at 1000 K) Li–Ni antisite defect concentration Li–Co antisite defect concentration	12.9% 0.002%	$Li_{12}TM_{12}O_{24}$ DFT calculations	[1]	
Li Frenkel pairs LiCl Schottky pair Li ₂ O Schottky pair Li interstitial with a substitutional O on the Cl site	~2 eV 1.41 eV 1.60 eV 1.67 eV	Anti-perovskite Li ₃ OCl DFT calculations	[2]	
Li Frenkel Li ₂ O Schottky	0.76 3.59	NASICON-type LiTi ₂ (PO ₄) ₃ Classical MD	[3]	
Li Frenkel Ge/P antisite (isolated) Ge/P antisite (cluster) Li ₂ O Schottky	0.75 2.01 1.26 3.10	NASICON-type LiGe ₂ (PO ₄) ₃ Classical MD	[4]	
Li Frenkel Li/La antisite (cluster) Li ₂ O Schottky	< 1 eV	Garnet-type Li ₇ La ₃ Zr ₂ O ₁₂ DFT	[5]	
Li Frenkel Li ₂ O Schottky Li/M antisite	3.73 9.20 0.84 (Ni)	$\frac{DFT/classical\ MD}{LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2}$	[6]	
Li Frenkel	1.76	LiMn ₂ O ₄	[7]	
Li Frenkel Li ₂ O Schottky	2.15 6.33	LiFePO ₄	[8]	

Li/M antisite	1.13		
Li Frenkel	1.97	LiMnPO ₄	[9]
Li ₂ O Schottky	7.36		
Li/M antisite	1.48		
Li Frenkel	1.21	Li ₂ FeP ₂ O ₇	[10]
Li/M antisite	0.22		

Fig. SI3: A schematic description of the bottleneck size calculation

Fig. SI4: LiO₆ and Ge/AlO₆ polyhedra taken from optimized unit cell of (a) before and (b) after substitution of Al³⁺ at Ge⁴⁺ position. The values of Li-O bond lengths are shown.

Fig. SI5: Total and atom-projected partial density of states (DOS) for (a) B^{3+} , (b) Al^{3+} , (c) Ga^{3+} , (d) Sc^{3+} , (e) In^{3+} , (f) Y^{3+} , (g) Gd^{3+} and (h) La^{3+}

Fig. SI6: Total and atom-projected partial density of states (DOS) for (a) Si⁴⁺, (b)Ti⁴⁺, (c) Sn⁴⁺ and (d) Zr⁴⁺

Fig. SI7: Total and atom-projected partial density of states (DOS) for (a) Cs⁺, (b) K⁺, (c) Na⁺ and (d) Rb⁺

Fig. SI8: Total and atom-projected partial density of states (DOS) for (a) Ba²⁺, (b) Ca²⁺, (c) Mg²⁺ and (d) Sr²⁺

References

[1] Y. Kim, Phys. Chem. Chem. Phys., 2019, 21, 24139.

[2] Z. Lu, C. Chen, Z.M. Baiyee, X. Chen, C. Niu, F. Ciucci, Phys. Chem. Chem. Phys., 2015, 17, 32547.

[3] R. Sukumar, P. Iyngaran, N. Kuganathan, Biointerface Res. Appl. Chem., 2021, 11, 13268.

[4] N. Kuganathan, K.A. Rex, P. Iyngaran, Sustain. Chem., 2022, 3, 404.

[5] N. Kuganathan, M.J.D. Rushton, R.W. Grimes, J.A. Kilner, E.I. Gkanas, A. Chroneos, *Sci. Rep.*, 2021, **11**, 451.

[6] M.S. Islam, C.A. J. Fisher, Chem. Soc. Rev., 2014, 43, 185.

[7] X. Li, J. Wang, S. Zhang, L. Sun, W. Zhang, F. Dang, H.J. Seifert, Y. Du, ACS Omega, 2021, 6, 21255.

[8] M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater, Chem. Mater., 2005, 17, 5085.

[9] C.A. J. Fisher, V.M.H. Prieto, M.S. Islam, Chem. Mater., 2008, 20, 5907.

[10] J.M. Clark, S. Nishimura, A. Yamada, M.S. Islam, Angew. Chem. Int. Ed., 2012, 51, 1.