# Electronic Supplementary Information: ONIOM meets xtb: Efficient, Accurate, and Robust Multi-Layer Simulations Across the Periodic Table

Christoph Plett,<sup>*a*</sup> Abylay Katbashev,<sup>*a*</sup> Sebastian Ehlert,<sup>*b*</sup> Stefan Grimme,<sup>\**a*</sup> and Markus Bursch<sup>\**c*</sup>

May 12, 2023

<sup>a</sup> Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany. E-mail: grimme@thch.uni-bonn.de

<sup>b</sup> Microsoft Research AI4Science, Evert van de Beekstraat 254, 1118 CZ Schiphol, Netherlands.

<sup>c</sup> Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany. E-mail: bursch@kofo.mpg.de

# Contents

| 1 | Imp  | lementation                 | 3 |  |  |  |  |  |
|---|------|-----------------------------|---|--|--|--|--|--|
|   | 1.1  | Element-specific parameters | 3 |  |  |  |  |  |
|   | 1.2  | Derivatives for Jacobian    | 3 |  |  |  |  |  |
|   |      | 1.2.1 Constant              | 3 |  |  |  |  |  |
|   |      | 1.2.2 Dynamic               | 3 |  |  |  |  |  |
| 2 | Deta | Detailed results 4          |   |  |  |  |  |  |
|   | 2.1  | Molecular structures        | 4 |  |  |  |  |  |
|   |      | 2.1.1 UiO-66                | 4 |  |  |  |  |  |
|   |      | 2.1.2 DALTES                | 5 |  |  |  |  |  |
|   | 2.2  | Electronic energies         | 6 |  |  |  |  |  |

## **1** Implementation

#### **1.1 Element-specific parameters**

Table 1: Element-specific parameters used to calculate the static scaling factor k in the ONIOM implementation of *xtb*. The average bond distances  $d^{ONIOM}$  are given in Å.

|          | -     |       |       |       |       |       |
|----------|-------|-------|-------|-------|-------|-------|
| Elements | Н     | С     | 0     | N     | Р     | S     |
| Н        | 0.740 | 1.084 | 0.964 | 1.024 | 1.414 | 1.389 |
| С        | -     | 1.528 | 1.430 | 1.475 | 1.860 | 1.750 |
| 0        | -     | -     | 1.450 | 1.360 | 1.750 | 1.500 |
| Ν        | -     | -     | -     | 1.470 | 1.770 | 1.650 |

#### **1.2** Derivatives for Jacobian

The general equation for the Link atom coordinates is given by:

$$\vec{R}_{\rm LA} = \vec{R}_{\rm inner} + k(\vec{R}_{\rm outer} - \vec{R}_{\rm inner}) \tag{1}$$

Herein, k factor is defined as:

$$k = \frac{d_1}{d_2} \tag{2}$$

where  $d_1$  is the distance between the inner region atom and a hydrogen atom that is taken as corresponding parameter from Table 1.  $d_2$  is the distance between the inner region and outer region atoms which  $d_2$  can be chosen to be either constant or equal to the actual distances in molecular systems.

#### 1.2.1 Constant

If  $d_2$  is constant, the differentiation of Equation (1) with respect to the real coordinates of the full system is given by:

$$\frac{\delta R_{\text{LA, i}}}{\delta R_{\text{inner, i}}} = (1 - k), \text{ with } i=x, y, z$$
(3)

$$\frac{\delta R_{\text{LA, i}}}{\delta R_{\text{outer, i}}} = k \tag{4}$$

#### 1.2.2 Dynamic

If  $d_2$  is set to be equal to the actual distance in the system, is can be defined as

$$d_2 = \sqrt{\sum_{i=1}^{3} (R_{\text{outer},i} - R_{\text{inner},i})^2}.$$
 (5)

Thus, the derivatives of Equation (1) changes to

$$\frac{\delta R_{\text{LA, i}}}{\delta R_{\text{inner, i}}} = 1 - k \left( 1 - \frac{(R_{\text{outer, i}} - R_{\text{inner, i}})^2}{d_2} \right),\tag{6}$$

and

$$\frac{\delta R_{\text{LA, i}}}{\delta R_{\text{outer, i}}} = k \frac{\sum_{i \neq j}^{3} (R_{\text{outer, j}} - R_{\text{inner, j}})^2}{d_2}.$$
(7)

## 2 Detailed results

## 2.1 Molecular structures

### 2.1.1 UiO-66

Table 2: Comparison of the heavy atom root-mean-square deviations (hRMSDs) (vs X-ray) and the wall-times (on 14 cores) for the cut-out of the UiO-66 metal-organic framework (MOF) with a total size of 484 atoms optimized with different GFN and DFT methods, as well as their ONIOM combinations. 1, 3, and 6 are sizes of the inner regions used for the corresponding ONIOM calculations.

| Methods                          | size | hRMSD(vs X-ray) / Å | Wall-time (14cores) |
|----------------------------------|------|---------------------|---------------------|
| GFN-FF                           | full | 0.335               | 5s                  |
|                                  | 1    | 0.290               | 12s                 |
| GFN2-xTB//GFN-FF                 | 3    | 0.233               | 49s                 |
|                                  | 6    | 0.115               | 1m 54s              |
|                                  | 1    | 0.288               | 52m                 |
| TPSS-D4/def2-SVP//GFN-FF         | 3    | 0.213               | 5h 55m              |
|                                  | 6    | 0.025               | 11h 1m              |
|                                  | 1    | 0.292               | 2h 21m              |
| r <sup>2</sup> SCAN-3c//GFN-FF   | 3    | 0.219               | 12h 50m             |
|                                  | 6    | 0.025               | 20h 57m             |
|                                  | 1    | 0.291               | 16h 16m             |
| ωB97X-3c//GFN-FF                 | 3    | 0.212               | 113h 19m            |
|                                  | 6    | 0.031               | 202h 51m            |
| GFN2-xTB                         | full | 0.156               | 3m                  |
|                                  | 1    | 0.155               | 1h 30m              |
| TPSS-D4/def2-SVP//GFN2-xTB       | 3    | 0.119               | 6h 1m               |
|                                  | 6    | 0.059               | 10h 45m             |
|                                  | 1    | 0.161               | 3h 31m              |
| r <sup>2</sup> SCAN-3c//GFN2-xTB | 3    | 0.124               | 19h 22m             |
|                                  | 6    | 0.054               | 18h 20m             |
|                                  | 1    | 0.158               | 31h 35m             |
| ωB97X-3c//GFN2-xTB               | 3    | 0.126               | 169h 59m            |
|                                  | 6    | 0.069               | 334h 32m            |
| TPSS-D4/def2-SVP                 | full | 0.031               | 46h 9m              |
| r <sup>2</sup> SCAN-3c           | full | 0.030               | 190h 38m            |
| ωB97X-3c                         | full | -                   | -                   |

### 2.1.2 DALTES

| Methods                | hRMSD | Wall time |
|------------------------|-------|-----------|
| GFN-FF                 | 0.315 | 38        |
| GFN2-xTB               | 0.178 | 2m        |
| TPSS-D4/def2-SVP       | 0.143 | 15h 42m   |
| TPSS-D4/def2-mSVP      | 0.140 | 37h 18m   |
| PBEh-3c                | 0.167 | 51h 10m   |
| B97-3c                 | 0.162 | 73h 55m   |
| r <sup>2</sup> SCAN-3c | 0.152 | 131h 40m  |
| TPSS-D4/def2-TZVP      | 0.153 | 147h 45m  |

Table 3: hRMSD (vs.X-Ray) and wall time values (on 28 cores) of the geometry optimizations of the DALTES polyhedron with different QC methods, ordered according to the increasing computing time.



Figure 1: The relative potential energy curve of the cyanosilylation reaction computed with r<sup>2</sup>SCAN-3c, GFN2-xTB, and their r<sup>2</sup>SCAN-3c//GFN2-xTB ONIOM combination with the TPSS-D4/def2-SVP optimized geometries implicitly solvated in toluene.

| Table 4:  | The   | cyanosilylation             | relative | reaction  | energi | ies at th | e DALTES    | dirhodium | n metal | node ( | calculate | d with 1 | <sup>2</sup> SCA | N-3c,  | TPSS-   |
|-----------|-------|-----------------------------|----------|-----------|--------|-----------|-------------|-----------|---------|--------|-----------|----------|------------------|--------|---------|
| D4/def2-  | SVP   | and their ONIO              | M comb   | oinations | with C | GFN2-x'   | TB with the | e TPSS-D4 | /def2-S | VP op  | timized g | geometr  | ies. Tl          | ne ind | ividual |
| values ar | e giv | en in kcal·mol <sup>−</sup> | 1.       |           |        |           |             |           |         |        |           |          |                  |        |         |

| Methods                    | Solvation model                  | 1                    | 2                          | 3                          | TS                      | 4                          | 5                          |
|----------------------------|----------------------------------|----------------------|----------------------------|----------------------------|-------------------------|----------------------------|----------------------------|
| TPSS-D4/def2-SVP           | COSMO                            | 0.00                 | -25.75                     | -30.78                     | 1.52                    | -51.88                     | -28.99                     |
| TPSS-D4/def2-SVP//GFN2-xTB | GBSA<br>ddCOSMO<br>COSMO/ddCOSMO | 0.00<br>0.00<br>0.00 | -28.52<br>-28.44<br>-25.69 | -33.98<br>-32.84<br>-36.56 | -3.49<br>-2.04<br>-7.05 | -51.39<br>-47.80<br>-43.54 | -25.98<br>-28.15<br>-36.85 |
| r <sup>2</sup> SCAN-3c     | COSMO                            | 0.00                 | -18.42                     | -20.58                     | 13.28                   | -44.34                     | -30.13                     |
| r²SCAN-3c//GFN2-xTB        | GBSA<br>ddCOSMO<br>COSMO/ddCOSMO | 0.00<br>0.00<br>0.00 | -20.28<br>-21.97<br>-27.36 | -24.20<br>-24.89<br>-27.58 | 8.73<br>8.41<br>3.29    | -43.54<br>-41.72<br>-60.00 | -25.78<br>-29.78<br>-37.12 |