Potential of nanostructured carbon materials for iodine detection in realistic environments revealed by first-principles calculations: Supporting information

Kazem Zhour^{a,b,1}, Ayoub Daouli^c, Andrei Postnikov^{a,*}, Abdellatif Hasnaoui^c, Michael Badawi^{b,*}

^aUniversité de Lorraine, LCP-A2MC, Metz, F-57000, France ^bUniversité de Lorraine & CNRS, LCPT, Nancy, F-54000, France ^cLS2ME, Sultan Moulay Slimane University of Beni Mellal, FP-Khouribga, Morocco

Figures S1 to S4 depict different trial initial geometries of molecules placed over different substrates, arbitrarily labelled throughout (a, b, etc.) within each pair (molecule + substrate).

Table S1 lists adsorption energies in final (relaxed) configurations, stemming from the numbered start configurations of Figs S1–S4.

Table S2 specifies bond lengths in free and adsorbed molecules.

Figures S5 to S8 depict partial densities of states for atoms involved in the adsorption of four trial molecules on C_3N monolayer.

Table S3 characterises charge transfer (specified within the Bader analysis) between four trial molecules and the C_3N substrate.

 $^{^{*}}$ Corresponding author

Email addresses: andrei.postnikov@univ-lorraine.fr (Andrei Postnikov), michael.badawi@univ-lorraine.fr (Michael Badawi)

¹Present address: Institut für Physikalische Chemie, Universität Münster, Germany

Figure S1: Top and side views of the considered adsoption position of I_2 , CH_3I , CO, and H_2O molecules on BC_3 sheet.

 $\label{eq:Figure S2: Top and side views of the considered adsoption position of I_2, CH_3I, CO, and H_2O \ molecules on 8-Pmmn \ borophene.$

Figure S3: Top and side views of the considered adsoption position of I_2 , CH_3I , CO, and H_2O molecules on BC_6N-2 sheet.

Figure S4: Top and side views of the considered adsoption position of I_2 , CH_3I , CO, and H_2O molecules on C_3N sheets.

												_				
		Đ	C_3		×	<i>Pmmn</i> b	orophene			BC_{6}	N-2			C_3	N	
Site	\mathbf{I}_2	CH_3I	CO	H_2O	\mathbf{I}_2	CH_3I	CO	H_2O	I_2	CH_3I	CO	$\rm H_2O$	\mathbf{I}_2	CH_3I	CO	$\rm H_2O$
а	-0.35	-0.15	-0.75	-0.15	-0.66	-0.29	-0.55	-0.14	-0.40	-0.27	-0.12	-0.07	-0.80	-0.28	-0.10	-0.17
q	-0.33	-0.21	-0.08	-0.21	-0.48	-0.18	-0.06	-0.12	-0.39	-0.26	-0.12	-0.15	-0.75	-0.25	-0.08	-0.19
ల	-0.49	-0.19	-0.11	-0.06	-0.38	-0.35	-0.65	-0.17	-0.39	-0.23	-0.11	-0.15	-0.78	-0.28	-0.12	-0.07
q	-0.38	-0.27	-0.09	-0.12	-0.54		-0.12	-0.24	-0.33	-0.19	-0.11	-0.17	-0.80	-0.24	-0.07	-0.12
e	-0.29	-0.18	-0.75	-0.15				-0.12	-0.33	-0.21	-0.08	-0.17	-0.76	-0.28	-0.10	-0.18
f	-0.49	-0.26	-0.07	-0.21					-0.35	-0.20	-0.08	-0.14	-0.73	-0.28	-0.07	-0.10
60	-0.28	-0.19	-0.07										-0.80	-0.18	-0.10	-0.19
Ч	-0.49	-0.21	-0.06										-0.56	-0.21	-0.09	-0.13
	-0.28	-0.19	-0.07										-0.55	-0.20	-0.13	
	-0.44	-0.27	-0.06										-0.60	-0.22	-0.15	
Ч	-0.27	-0.18	-0.09										-0.51	-0.21	-0.11	
1	-0.26	-0.26	-0.06										-0.60	-0.22	-0.08	
Ш	-0.37	-0.28	-0.10										-0.60	-0.33	-0.15	
n	-0.42	-0.44	-0.08											-0.33	-0.13	
0	-0.43	-0.28												-0.34		
d		-0.31												-0.32		
Ъ		-0.28												-0.31		
r		-0.35												-0.32		
s		-0.40														

Table S1: Adsorption energies in eV of I_2 , CH₃I, CO, and H₂O molecules for different sites on BC₃, 8-Pmmn borophene, BC₆N-2, and C₃N sheets. The corresponding adsorption sites are shown in Fig. S1–S4. The largest adsorption energy for each (molecule / substrate) pair is indicated in boldface,

Molecule:	I_2	CH ₃ I		СО	H_2O
Bond:	I–I	C–I	C–H	C–O	H–O
In free molecule:	2.68	2.16	1.09	1.14	0.97
On BC ₃ :	$2.67 \\ (-0.01)$	$2.15 \\ (0.01)$	$1.09 \\ (0.00)$	$1.15 \\ (0.01)$	$\begin{array}{c} 0.97 \\ (0.00) \end{array}$
On 8- <i>Pmmn</i> borophene:	$2.72 \\ (0.04)$	2.16 (0.00)	$1.09 \\ (0.00)$	$1.14 \\ (0.00)$	$0.97 \\ (0.00)$
On BC_6N-2 :	$2.82 \\ (0.13)$	2.16 (0.00)	$1.09 \\ (0.00)$	$1.15 \\ (0.01)$	$0.97 \\ (0.00)$
On C ₃ N:	$2.92 \\ (0.24)$	2.16 (0.00)	$1.09 \\ (0.00)$	$1.14 \\ (0.00)$	$0.97 \\ (0.00)$

Table S2: Selected bond lengths (in Å) in free and adsorbed molecules. The absolute change of the bond length relative to free molecule is shown in parentheses.

Figure S5: Partial densities of states for atoms concerned by absorption of I_2 on a $\mathrm{C}_3\mathrm{N}$ sheet.

Figure S6: Partial densities of states for atoms concerned by absorption of CH_3I on a C_3N sheet.

Table S3: Charge transfer (in e, derived from the Bader analysis) accompanying the relaxed configuration with the strongest adsorption energy of different molecules on C_3N . Negative values mean transfer of electrons from the molecule to the substrate.

Molecules:	I_2	$\mathrm{CH}_{3}\mathrm{I}$	СО	$\rm H_2O$
Charge transfer:	-0.43	-0.00	-0.04	-0.02

Figure S7: Partial densities of states for atoms concerned by absorption of CO on a C_3N sheet.

Figure S8: Partial densities of states for atoms concerned by absorption of H_2O on C_3N sheet.