Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Electronic Supplementary Information

The magnetically induced current density of the [12]infinitene dianion^{\dagger}

Qian Wang,^{*a*} Mesías Orozco-Ic,^{*a,b*} and Dage Sundholm^{*a}

Received Date Accepted Date

DOI: 00.0000/xxxxxxxxx

^a Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland; E-mails: qian.x.wang@helsinki.fi, mesias.orozco@dipc.org, dage.sundholm@helsinki.fi

^b Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain

Figure S1 The current density of [12]infinitene dianion. The color scheme corresponds to the strength of the current density with white being the strongest and then yellow and then red, the weakest ones are black. The pictures have been made with Paraview.

Figure S2 Two independent global ring currents are shown in green and blue, respectively. The current-density pictures have been made with paraview.

Figure S3 The current density through the space from one side of the molecule to the other. The color scheme corresponds to the strength of the current density with white being the strongest and then yellow and then red, the weakest ones are black. The current-density pictures have been made with paraview.

Figure S4 Through-space current-density pathways. The color scheme corresponds to the strength of the current density with white being the strongest and then yellow and then red, the weakest ones are black. The current-density pictures have been made with paraview.

Cartesian coordinates (in Å) of the optimized molecular structure of the [12]infinitene dianion

С	-1.2395717	-1.3322532	-1.7254663
С	-0.4129834	-2.4350223	-1.8916262
С	0.9495472	-2.3475613	-1.6173251
С	1.7470821	-3.5242295	-1.6477682
С	3.0550517	-3.4721249	-1.3370063
С	3.6609789	-2.2619821	-0.8879886
С	5.0481637	-2.2588918	-0.6974232
С	5.6990163	-1.1094940	-0.3501065
С	4.9582058	0.0263987	0.0137249
С	5.6843758	1.1796269	0.4058729
С	5.0397639	2.2890878	0.8188774
С	3.6333894	2.2717276	1.0083783
С	2.8841475	1.0887989	0.7611581
С	3.5271613	0.0230814	0.0315929
С	2.8674652	-1.0829585	-0.7054509
С	1.5490186	-1.1014397	-1.2431133
С	0.7164399	0.0807380	-1.4596414
С	1.2395717	1.3322532	-1.7254663
С	-0.7164399	-0.0807380	-1.4596414
С	0.4129834	2.4350223	-1.8916262
С	-1.5490186	1.1014397	-1.2431133
С	-0.9495472	2.3475613	-1.6173251
С	-2.8674652	1.0829585	-0.7054509
С	-1.7470821	3.5242295	-1.6477682
С	-3.6609789	2.2619821	-0.8879886
С	-3.5271613	-0.0230814	0.0315929
С	-3.0550517	3.4721249	-1.3370063
С	-5.0481637	2.2588918	-0.6974232
С	-4.9582058	-0.0263987	0.0137249
С	-2.8841475	-1.0887989	0.7611581
С	-5.6990163	1.1094940	-0.3501065
С	-5.6843758	-1.1796269	0.4058729
С	-3.6333894	-2.2717276	1.0083783
С	-1.4955177	-1.1159206	1.2127460
С	-5.0397639	-2.2890878	0.8188774
С	-3.0093782	-3.4737765	1.4170972
С	-0.8842092	-2.3740475	1.4915577
С	-1.6596043	-3.5393660	1.5789862
С	-0.7073152	0.0472485	1.4303657
С	0.7073152	-0.0472485	1.4303657
С	3.0093782	3.4737765	1.4170972
С	1.2834080	-1.3321509	1.6396071
С	0.5043606	-2.4359837	1.7378887
С	1.4955177	1.1159206	1.2127460
С	-0.5043606	2.4359837	1.7378887
С	-1.2834080	1.3321509	1.6396071
С	1.6596043	3.5393660	1.5789862
С	0.8842092	2.3740475	1.4915577
Н	-0.8318396	-3.4044851	-2.1316553
Н	1.2803754	-4.4577393	-1.9414524
Н	3.6805167	-4.3545247	-1.4123315
Н	5.5975335	-3.1724578	-0.8929414
Н	6.7799862	-1.0638162	-0.3060477
Н	6.7656205	1.1516944	0.3414843

Н	5.5818112	3.1969745	1.0553773
Н	0.8318396	3.4044851	-2.1316553
Н	-1.2803754	4.4577393	-1.9414524
Н	-3.6805167	4.3545247	-1.4123315
Н	-5.5975335	3.1724578	-0.8929414
Н	-6.7799862	1.0638162	-0.3060477
Н	-6.7656205	-1.1516944	0.3414843
Н	-5.5818112	-3.1969745	1.0553773
Н	-3.6300294	-4.3522503	1.5460751
Н	-1.1698175	-4.4771577	1.8136873
Н	2.3104936	1.4574735	-1.7946905
Н	-2.3104936	-1.4574735	-1.7946905
Н	2.3516338	-1.4081383	1.7737066
Н	0.9433626	-3.4003219	1.9638511
Н	-2.3516338	1.4081383	1.7737066
Н	3.6300294	4.3522503	1.5460751
Н	1.1698175	4.4771577	1.8136873
Н	-0.9433626	3.4003219	1.9638511

The ¹H NMR shielding constants of [12]infinitene dianion

No.	Туре	Mult.	Isotropic
49	h	2	27.39803128
50	h	2	25.90574235
51	h	2	24.84621133
52	h	2	24.67419763
53	h	2	24.55579936
54	h	2	23.65424114
55	h	2	23.84713488
56	h	0	27.39803128
57	h	0	25.90574235
58	h	0	24.84621133
59	h	0	24.67419763
60	h	0	24.55579936
61	h	0	23.65424114
62	h	0	23.84713488
63	h	2	24.26090419
64	h	2	24.14512372
65	h	2	33.75926338
66	h	0	33.75926338
67	h	2	30.75342136
68	h	2	24.90513054
69	h	0	30.75342136
70	h	0	24.26090419
71	h	0	24.14512372
72	h	0	24.90513054

The 13 C NMR shielding constants of [12]infinitene dianion

1	с	2	55.15964391
2	с	2	71.86258635
3	с	2	31.11896143
4	с	2	54.19760558
5	с	2	54.26224097
6	с	2	35.46318305
7	с	2	67.33901553
8	с	2	74.13565009
9	с	2	34.98442954

10	с	2	52.64918584
11	с	2	58.26958449
12	с	2	36.91836590
13	с	2	52.84282709
14	с	2	72.13481456
15	с	2	45.24510831
16	с	2	67.30673418
17	с	2	58.59759910
18	с	0	55.15964391
19	с	0	58.59759910
20	с	0	71.86258635
21	с	0	67.30673418
22	с	0	31.11896143
23	с	0	45.24510831
24	с	0	54.19760558
25	с	0	35.46318305
26	с	0	72.13481456
27	с	0	54.26224097
28	с	0	67.33901553
29	с	0	34.98442954
30	с	0	52.84282709
31	с	0	74.13565009
32	с	0	52.64918584
33	с	0	36.91836590
34	с	2	71.67819259
35	с	0	58.26958449
36	с	2	66.44645264
37	с	2	51.53876124
38	с	2	56.33880687
39	с	2	46.20077831
40	с	0	46.20077831
41	с	0	66.44645264
42	с	2	51.16001659
43	с	2	52.72499869
44	с	0	71.67819259
45	с	0	52.72499869
46	с	0	51.16001659
47	с	0	56.33880687
48	С	0	51.53876124

NMR chemical shifts

¹H NMR (in ppm) of the [12]infinitene dianion

1H NMR (in ppm) for atoms close to the holes in [12]infinitene dianion The TMS reference shielding constant 31.89235531 ppm

Shielding constant	Chemical shift
33.75926338	-1.86690807
30.75342136	1.13893395

1H NMR (in ppm) for atoms far away from the holes in [12]infinitene dianion The TMS reference shielding constant 31.89235531 ppm

Shielding constant	Chemical shift
27.39803128	4.49432403
25.90574235	5.98661296
24.84621133	7.04614398
24.67419763	7.21815768
24.55579936	7.33655595

23.65424114	8.23811417
23.84713488	8.04522043
24.26090419	7.63145112
24.14512372	7.74723159
24.90513054	6.98722477

¹³C NMR (in ppm) of the [12]infinitene dianion

The TMS reference shielding constant 188.54716189 ppm

Shielding o	constant	Chemical	shift
55.15964391		133.387517	798
71.86258635		116.684575	554
31.11896143		157.428200	046
54.19760558		134.349556	531
54.26224097		134.284920)92
35.46318305		153.083978	384
67.33901553		121.208146	536
74.13565009		114.411511	180
34.98442954		153.562732	235
52.64918584		135.897976	505
58.26958449		130.277577	740
36.91836590		151.628795	599
52.84282709		135.704334	180
72.13481456		116.412347	733
45.24510831		143.302053	358
67.30673418		121.240427	771
58.59759910		129.949562	279
71.67819259		116.868969	930
66.44645264		122.100709	925
51.53876124		137.008400	065
56.33880687		132.208355	502
46.20077831		142.346383	358
51.16001659		137.387145	530
52.72499869		135.822163	320