Supporting Information

TiSe Monolayer as a superior anode for the applications of

Li/Na/K-ion batteries

Mengke Wang¹, Shan Wang², Yunye Liang¹, Yiqun Xie¹, Xiang Ye^{*1}, Shoutian, Sun^{*1}

¹Department of Physics, Shanghai Normal University, Shanghai 200234, P. R. China ²School of Physics and Electronic Science, East China Normal University, Shanghai 200062, P. R. China

Email address: yexiang@shnu.edu.cn (Xiang Ye), stsun@shnu.edu.cn (Shoutian Sun)

Fig. S1. Total and projected DOS of a single Li (a-c), Na (d-f), K (g-i) atom adsorbed onto TiSe for the BG, H, and T_{Ti} site, with fermi energy level set to 0 eV.

Site -		d (Å)	
	Li	Na	K
T _{Ti}	1.396	1.865	2.333
BG	1.281	1.943	2.397
Н	0.671	1.227	1.823

Table S1. The distances of alkali metal to the substrate at different adsorption sites.

Fig. S2. Plots of the diffusion coefficient versus temperature for Li (a), Na (b), K (c) along paths I and II.

To investigate the diffusion of Li/Na/K in the substrate TiSe, AIMD simulation is carried out at different temperatures (300, 600, 900,1200, 1500 K). We have used a minimum Γ -centered 1 x 1 x 1 *k*-point grid. The time step is chosen to be 1 fs and the diffusion simulation is carried out for 10 ps. The diffusion coefficient is given by:

$$D = \lim_{t \to \infty} \left[\frac{1}{2dt} \left\langle \left[\stackrel{\mathsf{r}}{r} \left(t \right) \right]^2 \right\rangle \right]$$

where t and d denote time and the dimension of the lattice. The average mean square displacement is calculated by:

$$\left\langle \left[\stackrel{\mathsf{r}}{r}(t) \right]^{2} \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \left\langle \left[\stackrel{\mathsf{r}}{r_{i}}(t+t_{0}) \right]^{2} - \left[\stackrel{\mathsf{r}}{r_{i}}(t_{0}) \right]^{2} \right\rangle$$

where N is the number of particles, and the square brackets indicate the average of the ensemble. $r_i(t)$ is the coordinate of particle *i* at time *t*.

Fig. S3. The electronic band structure of the intermediate geometries $Li_x(TiSe)_4$ (x = 1, 8 and 16). The Fermi level is set to zero.

Fig. S4. The electronic band structure of the intermediate geometries $Na_x(TiSe)_4$ (x = 1, 2, 6, 8, and 16). The Fermi level is set to zero.

Fig. S5. The electronic band structure of the intermediate geometries $K_x(TiSe)_4$ (x = 1, 2, 6, 8, and 16). The Fermi level is set to zero.

Fig. S6. AIMD simulation with 10 ps at 300 K for $Li_x(TiSe)_4$. The inset is the snapshot of last step.

Fig. S7. AIMD simulation with 10 ps at 300 K for $Na_x(TiSe)_4$. The inset is the snapshot of last step.

Fig. S8. AIMD simulation with 10 ps at 300 K for $K_x(TiSe)_4$. The inset is the snapshot of last step.

Table S2.	The	formation	energy	of	alkaline	ions	added	one	by	one	to	the	TiSe
monolayer													

N	E _{binding} (eV)					
¹ Vions	Li	Na	K			
1	-1.54	-1.51	-1.97			
2	-1.31	-1.26	-1.67			
3	-1.25	-1.07	-1.38			
4	-1.30	-1.05	-1.28			
5	-1.31	-1.05	-1.18			
6	-1.35	-1.07	-1.15			
7	-1.37	-1.03	-1.10			
8	-1.38	-1.01	-1.06			
9	-1.11	-0.85	-0.95			
10	-0.90	-0.72	-0.85			
11	-0.80	-0.67	-0.79			
12	-0.71	-0.63	-0.73			
13	-0.68	-0.60	-0.68			
14	-0.64	-0.57	-0.64			
15	-0.60	-0.56	-0.61			
16	-0.59	-0.56	-0.57			