Matrix-Isolation Vibrational Circular Dichroism (VCD) Spectroscopy of Chiral 1-Phenyl-1Propanol

Corentin Grassin and Christian Merten*

Ruhr Universität Bochum
Fakultät für Chemie und Biochemie, Organische Chemie II
Universitätsstraße 150
44801 Bochum, Germany
christian.merten@ruhr-uni-bochum.de
www.mertenlab.de

Experimental and computational details.

Both enantiomers of 1PP were directly purchased from TCI solution and have been used without further purification.
All experiments were carried out on a matrix system equipped with a Sumitomo F-70H closed-cycle helium compressor and connected to Sumitomo RDK-408D2 cold head.
IR and VCD spectra were taken with a Bruker Invenio-R FT-IR spectrometer equipped with a PMA 50 module for VCD measurements. The spectral resolution of the spectra was $2 \mathrm{~cm}^{-1}$. For MI-IR and MIVCD spectra, 50 and 20000 scans were accumulated.

Geometry optimizations, the calculation of the vibrational spectra, PES and transition states were carried out using the Gaussian 09 Rev . E software package ${ }^{1}$ in the gas phase with tight conversion and ultrafine integration grids. Other consideration such as the integral equation formalism of the polarizable continuum model (IEFPCM) for Argon or explicit solvation on the alcohol group with N_{2} were compared but did not lead to any changes compared to the gas phase. The calculations were carried out at the B3PW91/6-311++G(2d,p) level of theory. Vibrational line broadening was simulated by assigning a Lorentzian band shape with half-width at half height (HWHH) of $2 \mathrm{~cm}^{-1}$ to the calculated dipole and rotational strength. A scale factor of $\sigma=0.98$ was used for the calculated frequencies. The PES was determined by varying either the α or β angle with a step of 5° while relaxing the other coordinates.

[^0]Table S1. Monomeric structures of (S)-1PP: Torsional angles (in degree), relative zero-point corrected electronic energies, Gibbs free energies ($\Delta \mathrm{E}_{\text {ZPC }}$ and $\Delta \mathrm{G}_{298 \mathrm{~K}}$, in $\mathrm{kcal} / \mathrm{mol}$), the corresponding Boltzmann weights χ (in percentage) and the connecting transition states as obtained at the B3PW91/6-311++G(2d,p) level of theory.

	$\boldsymbol{\alpha}\left(\mathrm{C}_{\text {ar }} \mathrm{C}^{*}-\mathrm{O}-\mathrm{H}\right)$	$\beta\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}^{*}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$	$\gamma\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}^{*}-\mathrm{CH}_{2}\right)$	$\Delta \mathbf{E}_{\mathbf{Z P C}}$	$\chi\left(\mathbf{E}_{\mathrm{ZPC}}\right)$
c1	-55.7	175.1	80.4	$0.0^{\text {a) }}$	50.5
c2	-50.9	64.4	72.3	0.35	26.4
c3	-55.8	-62.9	94.7	1.11	6.6
c4	176.5	176.6	93.8	1.27	4.9
c5	170.6	64.2	77.5	1.67	2.3
c6	178.3	-61.2	106.5	1.94	1.4
c7	74.5	172.4	116.5	1.80	1.8
c8	45.5	63.2	51.0	1.85	1.7
c9	74.5	-63.7	122.0	2.4	0.6
c10	42.5	174.0	52.4	1.68	2.3
c11	49.3	173.7	15.0	1.92	1.5
$\mathrm{TS}(1 \rightarrow 7)$	27.2	175.0		1.51	
$\mathrm{TS}(1 \rightarrow 4)$	-132.8 (=227.2)	175.1		1.57	
$\mathrm{TS}(2 \rightarrow 8)$	28.5	63.9		1.67	
$\mathrm{TS}(4 \rightarrow 7)$	119.0	173.3		1.93	
$\mathrm{TS}(7 \rightarrow 11)$	61.5	177.1		2.21	
$\mathrm{TS}(5 \rightarrow 8)$	111.8	62.2		2.28	
$\mathrm{TS}(3 \rightarrow 6)$	-127.3 (=232.7)	-63.6		2.37	
$\mathrm{TS}(2 \rightarrow 5)$	-130.0 (=230.0)	62.5		2.43	
$\mathrm{TS}(6 \rightarrow 9)$	121.3	-62.5		2.58	
$\mathrm{TS}(3 \rightarrow 9)$	30.6	-64.6		3.37	
$\mathrm{TS}(1 \rightarrow 2)$	-54.0	119.4		3.38	
$\mathrm{TS}(4 \rightarrow 5)$	176.5	119.1		5.00	
$\mathrm{TS}(7 \rightarrow 8)$	67.3	117.7		5.18	
$\mathrm{TS}(2 \rightarrow 3)$	-55.0	-2.0		5.23	
$\mathrm{TS}(1 \rightarrow 3)$	-54.3	-121.3 (=238.7)		5.47	
$\mathrm{TS}(4 \rightarrow 6)$	178.6	$-119.8(=240.2)$		6.55	
$\mathrm{TS}(5 \rightarrow 6)$	177.2	-1.1		6.73	
$\mathrm{TS}(7 \rightarrow 9)$	70.8	$-124.6(=235.4)$		6.81	
$\mathrm{TS}(8 \rightarrow 9)$	81.5	-2.1		7.47	

Figure S1. Potential energy surface of (S)-1PP obtained by constraint geometry optimization holding the angles α and β fixed. The energy scale refers to relative zero-point corrected energies in $\mathrm{kcal} / \mathrm{mol}$. The conformers c10/c11 differ from c7 only in the phenyl ring orientation and a few points on the pathways to c 8 and c 9 could be computed before the phenyl ring relaxed to the main traces $\mathrm{c} 7 \rightarrow \mathrm{c} 8$ and $\mathrm{c} 7 \rightarrow \mathrm{c} 9$.

	$\Delta \mathrm{E}_{\text {ZPC }}$	$\chi\left(\mathbf{E}_{\text {ZPC }}\right) @ 298 \mathrm{~K}$	$\chi\left(\mathbf{E}_{\mathrm{ZPC}}\right) @ 25 \mathrm{~K}$
c1c2	$0.00{ }^{\text {a }}$	15.0	76.2
c1c1	0.06	14.4	23.8
c2c2	0.43	7.7	
c2c1	0.51	6.7	
c1c1bis	0.60	5.8	
c2c1bis	0.68	5.1	
c1c2bis	0.69	5.0	
c1c3	0.84	3.9	
c1c4	0.93	3.3	
c3c2	1.13	2.3	
c1c5	1.14	2.3	
c3c1	1.18	2.2	
c2c2bis	1.20	2.1	
c2c3	1.28	1.8	
c1c10	1.34	1.7	
c1c10bis	1.44	1.34	
c2c4	1.49	1.3	
c1c8	1.56	1.1	
c1c6	1.59	1.1	
c1c3bis	1.60	1.1	
${ }^{\text {a) }}$ referenced to $\mathrm{E}_{\mathrm{ZPC}}(\mathbf{c 1 c 2})=-850.370185$ hartree			

	$\Delta \mathbf{E}_{\text {ZPC }}$	$\chi\left(\mathbf{E}_{\text {ZPC }}\right) @ 35 \mathrm{~K}$
c1c1c2	$0.00^{\text {a }}$	88.5
c1c2c2	0.18	7.1
clclc1	0.21	4.2
c2c1c2	0.42	0.2
c2c2c2	0.58	0.0

Figure S2. Comparison of the experimental IR and VCD spectra of 1PP.

Figure S3. Simulated mixture spectra of $\mathbf{1 P P},(\mathbf{1 P P})_{\mathbf{2}}$ and $\mathbf{(1 P P}_{\mathbf{3}} \mathbf{3}_{\mathbf{3}}$ explaining the experimental VCD spectra recorded at 20 K and $25 \mathrm{~K} . \operatorname{MixMD}=80: 15: 5 / \mathrm{mixMDT}=30: 30: 40$ of monomer/dimer/trimer.

[^0]: ${ }^{1}$ Gaussian 09, Rev E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Wallingford CT, USA, 2013

