Supplementary Information for

Prediction of a reservoir of N-rich high-energy density material at the Earth's mantle

Kang Yang,^a Jingming Shi^{*a}, Wenwen Cui,^a Jian Hao,^a and Yinwei Li^{*a} ^a Laboratory of Quantum Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.

*Address correspondence to: jingmingshi@jsnu.edu.cn; yinwei_li@jsnu.edu.cn

Fig. S1. Calculated formation enthalpies of $H_2O(N_2)_x$ (*x*=0.25, 0.5, and 1-6) compounds relative to solid H_2O and N_2 at 50, 200 and 300 GPa. Calculations considered all ground states of solid H_2O and N_2 at different pressures: X phase of H_2O at 0-280 GPa; *Pbcm* phase of H_2O at 280-300 GPa; ε phase of N_2 at 0-120 GPa; *I*2₁3 phase of N_2 at 120-195 GPa; *Pba*2 phase of N_2 at 195-275 GPa; *I*43*m* phase of N_2 at 275-300 GPa.

Crystal	Pressure	Space	Lattice	Wyckoff position
structure		group	parameters	
H ₂ ON ₁₀	100 GPa	<i>P</i> 1	<i>a</i> = 3.7886 Å	N1:1a (0.40887, 0.15619, 0.20540)
			b = 4.0792 Å	N2:1a (0.93521, 0.94154, 0.88580)
			c = 4.8578 Å	N3:1a (0.46401, 0.83800, 0.69493)
			$\alpha = 112.336$ °	N4:1a (0.02805, 0.65341, 0.89542)
			$\beta = 84.263$ °	N5:1a (0.19834, 0.05252, 0.75844)
			$\gamma = 90.803$ °	N6:1a (0.85065, 0.24075, 0.44572)
				N7:1a (0.57505, 0.41544, 0.16805)
				N8:1a (0.36736, 0.60072, 0.79273)
				N9:1a (0.58857, 0.03928, 0.35350)
				N10:1a (0.84562, 0.47137, 0.32123)
				H1:1a (0.09829, 0.17171, 0.61388)
				H2:1a (0.53743, 0.49813, 0.98033)
				O1:1 <i>a</i> (0.06923, 0.68770, 0.33573)
H ₂ ON ₆	100 GPa	<i>P</i> 1	<i>a</i> = 2.65446 Å	N1:4a (0.87185, 0.29186, 0.45009)
			b = 4.06144 Å	N2:4a (0.41866, 0.72248, 0.21343)
			c = 4.34679 Å	N3:4a (0.67294, 0.55060, 0.47271)
			$\alpha = 81.35$ °	N4:4a (0.48144, 0.68209, 0.93653)
			$\gamma = 108.57$ °	N5:4a (0.10706, 0.13318, 0.73883)
			$\beta = 95.95$ °	N6:4 <i>a</i> (0.30332,0.88765, 0.68785)
				H1:4a (0.63266, 0.46131, 0.92706)
				H2:4a (0.22967, 0.93517, 0.23339)
				O1:4 <i>a</i> (0.93014, 0.20588, 0.18895)

Table S1. Structure Parameters. The structural parameters of H₂ON₁₀ and H₂ON₆.

Fig. S2. The band structures of H_2ON_6 projected onto different atomic orbitals (a) N, (b) H and (c) O atoms, respectively, at 100 GPa. (d) Projected density of states (PDOS) of H_2ON_6 at 100 GPa.

Fig. S3. The band structures of H_2ON_{10} projected onto different atomic orbitals (a) N, (b) H and (c) O atoms, respectively, at 100 GPa. (d) Projected density of states (PDOS) of H_2ON_{10} at 100 GPa.

Fig. S4. Electronic band structures (HSE06) of (a) H_2ON_6 and (b) H_2ON_{10} at 100 GPa.

Fig. S5. Calculated phonon dispersions for (a) H_2ON_6 and (b) H_2ON_{10} at 100 GPa.

(d)

Fig. S6. The atomic trajectories of the atomic positions of H_2ON_6 (upper panel) at (a) 72 GPa and 1500 K, (b) 73.7 GPa and 1800 K, (c) 81.7 GPa and 2600 K and H_2ON_{10} (lower panel) at (d) 70 GPa and 800 K, (e) 74 GPa and 1100 K and (f) 73.7 GPa and 2300 K.

Fig. S7. The calculated mean squared displacement (MSD) and atomic trajectories (inset) of the atomic positions of H_2ON_6 phase. (a)-(f) represent MSD at 81.7 GPa, 83.2 GPa, 96 GPa, 93.7 GPa, 104 GPa and 112.7 GPa and different temperatures.

Fig. S8. The calculated MSD and atomic trajectories (inset) of the atomic positions of H_2ON_{10} phase (a)-(f) represent MSD at 78.1 GPa, 86.4 GPa, 88.1 GPa, 92.8 GPa, 101.5 GPa and 105 GPa and different temperature.

Fig. S9. The radial distribution functions (RDFs) for a N-H, (b) N-N and (c) N-O of H_2ON_6 at different temperatures at 100 GP

Fig. S10. The RDFs for a N-H, (b) N-N and (c) N-O of H_2ON_{10} at different temperatures at 100 GPa.

Fig. S11. Phonon dispersion of structure of H_2ON_{10} at 0 GPa.