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1 Benchmarking the DFPT Polarizabilities
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Fig. S 1: Distribution of the relative errors of the mean polarizability (a) and the
polarizability anisotropy (b) calculated at DFPT/PBE0 level of theory compared
to LR-CCSD reference values.
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2 Kolmogorov-Smirnov-distances

To quantify the difference between the distributions of the eleven studied molec-
ular classes in the ∆EHL-α space, the pairwise Kolmogorov-Smirnov-distances
(i.e., 55 unique pairs) were calculated between the normalized quantities using
the SciPy implementation1. An (unnormalized) example for an unique pair is
shown in the main article in Figure 1b (α) and 1d (∆EHL) for non-conjugated
aldehydes and primary alcohols. The average distances were found to be 0.81
and 0.40 for the homo–lumo gap and polarizability, respectively.

The Kolmogorov-Smirnov distance for two probability distributions i and j
is defined using their individual empirical distribution functions F (X) as

Dij = sup |Fi(x)− Fj(x)| , (1)

Most commonly, the Kolmogorov-Smirnov distance is used in testing whether
the probability distributions i and j have the same underlying distribution2. In
our case, we calculate this metric for distributions that are known to be differ-
ent, not for the purpose of a statistical test, but to quantify the distances of the
distributions. In this context, the absolute value of the Kolmogorov-Smirnov dis-
tance has little practical information, however comparison of the distances con-
firm that homo–lumo gap depends on the functional groups present, whereas
polarizability does not.
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3 Frequency of Functional Groups in QM7–X
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Fig. S 2: Distribution of functional groups in the herein studied subset of 13 k
QM7–X-molecules and example molecules for the identified eleven main molec-
ular classes.
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4 Dataset Reduction

Fig. S 3: Schematic representation of the different data selection we used. Start-
ing from the full QM7–X containing non-equilibrium structures as well as differ-
ent conformers, we only select a single equilibrium conformer per entry. We then
select only those molecules that have functional groups only from our selected
list (see Fig. S 2). For analyses where functional group labeling is needed, the
structures that only have a single functional group are used.
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5 Distribution of Functional Groups in the (∆EHL, α)-
Space

Fig. S 4: HOMO–LUMO gaps and polarizabilities of structures having a single
functional group shown in Fig. S 2. The plot shows that the two quantites are
uncorrelated as well as that ∆EHL is clustered by functional groups whereas α
is not.
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6 Structure of the Linear Octenone Isomers
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Fig. S 5: Structures of the octenone molecules used in creating Fig. 2 of the
main text, with their chemical functionality highlighted.
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