Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary Material

The preparation of MOF-derived ZnO/Co₃O₄ nanocages and its sensing performance to H₂S

Han Liu, Jiawei Kong, Zhe Dong, Yongmei Zhao, Baoli An, Junping Dong, Jiaqiang Xu^{*}, Xiaohong Wang^{*}

NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99

Shangda Road, Shanghai 200444, China.

*Corresponding author email address: xujiaqiang@shu.edu.cn (J. Xu)

xiaohongwang@shu.edu.cn (X. Wang)

Figure and Table Captions:

Fig. S1. Structure and manufacturing process of MEMS gas sensor

Fig. S2 EDS images of the ZnO/Co_3O_4 -500 sample.

Table. S1 The summarization of H₂S semiconductor sensors development.

Table. S2 BET surface areas of different ZnO/Co₃O₄ materials.

1. Experimental Section

1.1. Chemicals

All reagents and solvents received from indicated suppliers were used without further purification. All materials were purchased from Sinopharm Chemical Reagent Co. Ltd.

1.2. Characterization

X-ray diffraction (XRD) patterns of the precursor and metal oxides samples were analyzed by using a DX-2700 diffractometer at a rate of 0.03° /s with a copper Ka1 radiation ($\lambda = 1.54056$ Å, Hao yuan, Dandong, China). The morphologies of the samples were analyzed by a field emission scanning electron microscope (SEM, FEI Nova Nano SEM 450) and transmission electron microscopy (TEM, JEM-200CX). The Brunauer-Emmett-Teller (BET) method was used to calculate the specific surface areas of ZnO/Co₃O₄ samples by using an automated gas sorption analyzer (Autosorb-IQ2, Quantachrome Instruments).X-ray photoelectron spectroscopy (XPS) datas were collected using an ESCALAB Xi+ spectrophotometer (UK, Thermo Fischer, ESCALAB Xi+) with Al K α radiation (hv = 1486.6 eV). The Photoluminescence spectra were measured at room temperature under excitation at 270 nm by a transient steady-state fluorescence spectrometer (Edinburgh Instruments, FLS 1000). The in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) IS-10 Thermofisher Scientific was used to study the reaction mechanism of H₂S. Before the test, the sample was purified with N₂ flow at 120 °C for 24 h to remove surface impurities and environmental H₂O so that their impacts have been decreased as far as

possible. The background spectrum was collected at 120 °C. Then, high purity air was introduced into the reactor, after that stream of 10 vol% H_2S in N_2 flow was introduced into the reactor and the DRIFT spectra was collected (20 scans). The H_2S adsorption studies were performed on ZnO/Co₃O₄-500 and pristine ZnO at 120 °C. The gas sensing tests were studied on the intelligent gas sensing analysis system. (Shanghai Lingpan Electronic Technology Co., Ltd., China)

1.3. Fabrication and measurement conditions of the MEMS gas sensors

The sensors' fabrication is as following: (1) The prepared samples and ethanol were mixed in an agate mortar and dropped onto the MEMS chip's central interdigital electrodes. (2) The MEMS chips were dried at room temperature and sintered at 180 °C for 10 h to improve their stability. (3) Embed the MEMS chips into the intelligent gas sensing analysis system and gas sensing performance were tested. Basic device structure of measuring system is shown in the Fig. S1. The sensors' measurement condition is: (1) The operating temperature of MEMS sensors were controlled by changing the heating voltage. (2) The gas sensor response was tested by a stationary state gas distribution method. A required amount of target gas was extracted from the standard concentration gas bags and injected into the test chamber by a microinjector. The concentration of target gas (C_{target gas}) was obtained by the formula: $C_{target gas} = \frac{V_{target gas}}{V_{test chamber}} \times C_{bag gas}$, where the volume of the test chamber (V test chamber) is 200

where the volume of the test chamber (V test chamber) is 200 cm³, the concentration of the gas in bag ($C_{bag gas}$) is standardized. Hence, we can control the volume of the target gas ($V_{target gas}$) extracted from the gas bags by a stationary to get the concentration of target gas. (3) The resistance of MEMS sensor (R_{sensor}) was

calculated by the formula: $R_{sensor} = \frac{(5 - V_{out})}{V_{out}} \times R_L$, where 5 is the circuit voltage, V_{out} is the output voltage of the load resistance (R_L) and recorded ten times a second.

Fig. S1. Structure and manufacturing process of MEMS gas sensor

Fig. S2 EDS images of the ZnO/Co₃O₄-500 sample.

Sensing materials	Working	Gas	Response	Response/recovery	Ref.
	temperature	concentration		time (s)	
	(°C)	(ppm)			
ZnO/CuO nanoparticles	175	0.8	941	/	[1]
Mo-doped ZnO nanowire	300	5	14	40/50	[2]
ZnO/CuO nanocomposites	250	10	11	58/273	[3]
Cu-ZnO nanomaterials	200	0.2	4733	23/53	[4]
3DIO-Pt/ZnO nanomaterials	320	0.25	11.2	8.7/19/4	[5]
Co ₃ O ₄ nanostructures	225	10	44%	/	[6]
ZnO/PdRh nanocube	260	1	185	18/28	[7]
SnO ₂ /CuO nanotubes	200	5	1395	5.3	[8]
ZnO/Co ₃ O ₄ nanofibers	270	0.2	/	/	[9]

Table. S1 The summarization of H_2S semiconductor sensors development.

Metal oxides semiconductor materials	BET surface area(m ² /g)	Ref.
ZnO/Co ₃ O ₄ composites	17.0	[10]
ZnO/Co ₃ O ₄ microspheres	60.9	[11]
flower-like ZnO/Co ₃ O ₄ nanobundle arrays	37.0	[12]
Co ₃ O ₄ nanoparticle	12.2	[13]
flower-like ZnO/ Co ₃ O ₄ composites	24.9	[14]
ZnO/Co ₃ O ₄ nanoparticle	21.1	[15]
Porous ZnO-Coated Co3O4 Nanorod	59.6	[16]
Core-shell structure of ZnO/Co ₃ O ₄ composites	47.4	[17]
ZnO/Co ₃ O ₄ -400	78.5	This work
ZnO/Co ₃ O ₄ -500	96.5	This work
ZnO/Co ₃ O ₄ -600	36.8	This work

Table. S2 BET surface areas of different ZnO/Co₃O₄ materials.

Supporting References

- [1] Z. Li, L. Guo, Z. Feng, S. Gao, H. Zhang, X. Yang, et al., Metal-organic frameworkderived ZnO decorated with CuO for ultra-high response and selectivity H₂S gas sensor, Sensors and Actuators B: Chemical, 366(2022).
- [2] H.S. Woo, C.H. Kwak, I.D. Kim, J.H. Lee, Selective, sensitive, and reversible detection of H₂S using Mo-doped ZnO nanowire network sensors, Journal of Materials Chemistry A, 2(2014) 6412-8.
- [3] T.L.H. Doan, J.Y. Kim, J.H. Lee, L.H.T. Nguyen, H.T.T. Nguyen, A.T.T. Pham, et al., Facile synthesis of metal-organic framework-derived ZnO/CuO nanocomposites for highly sensitive and selective H₂S gas sensing, Sensors and Actuators B-Chemical, 349(2021).
- [4] B.Y. Qi, X.C. Wang, X.Y. Wang, J.P. Cheng, Y.Y. Shang, Synthesis and H₂S-Sensing Properties of MOF-Derived Cu-Doped ZnO Nanocages, Nanomaterials, 12(2022).
- [5] X.Y. Zhou, L. Xu, S. Yang, S.D. Zhu, X.F. Chen, B.A. Dong, et al., Highly dispersed Metal-Organic-Framework-Derived Pt nanoparticles on threedimensional macroporous ZnO for trace-level H₂S sensing, Sensors and Actuators B-Chemical, 309(2020).
- [6] U.T. Nakate, P. Bhuyan, Y.T. Yu, S. Park, Synthesis and characterizations of highly responsive H₂S sensor using p-type Co₃O₄ nanoparticles/nanorods mixed nanostructures, International Journal of Hydrogen Energy, 47(2022) 8145-54.
- [7] N. Luo, Y. Chen, D. Zhang, M. Guo, Z. Xue, X. Wang, et al., High-Sensitive MEMS

Hydrogen Sulfide Sensor made from PdRh Bimetal Hollow Nanoframe Decorated Metal Oxides and Sensitization Mechanism Study, ACS Appl Mater Interfaces, 12(2020) 56203-15.

- [8] K.-R. Park, H.-B. Cho, J. Lee, Y. Song, W.-B. Kim, Y.-H. Choa, Design of highly porous SnO₂-CuO nanotubes for enhancing H2S gas sensor performance, Sensors and Actuators B: Chemical, 302(2020).
- [9] M.N. Rumyantseva, S.A. Vladimirova, V.B. Platonov, A.S. Chizhov, M. Batuk, J. Hadermann, et al., Sub-ppm H₂S sensing by tubular ZnO-Co₃O₄ nanofibers, Sensors and Actuators B: Chemical, 307(2020).
- [10] F.L. Gong, M.X. Peng, L.J. Yue, J.L. Chen, K.F. Xie, Y.H. Zhang, Design of p-n heterojunction on mesoporous ZnO/Co₃O₄ nanosheets for triethylamine sensor, Chemical Physics Letters, 779(2021).
- [11] L. Zhang, X. Jing, J. Liu, J. Wang, Y. Sun, Facile synthesis of mesoporous ZnO/Co₃O₄ microspheres with enhanced gas-sensing for ethanol, Sensors and Actuators B: Chemical, 221(2015) 1492-8.
- [12] N. Hu, W.H. Gong, L. Huang, P.K. Shen, Ultrahigh energy density asymmetric electrochemical capacitors based on flower-like ZnO/Co₃O₄ nanobundle arrays and stereotaxically constricted graphene, Journal of Materials Chemistry A, 7(2019) 1273-80.
- [13] R. Zhang, T.T. Zhou, L.L. Wang, T. Zhang, Metal-Organic Frameworks-Derived Hierarchical Co₃O₄ Structures as Efficient Sensing Materials for Acetone Detection, ACS Appl Mater Interfaces, 10(2018) 9765-73.

- [14] K. Li, X.F. Li, X. Chang, X.R. Qiao, Y. Xiong, F.J. Xia, et al., Metal-organic frameworks derived hierarchical flower-like ZnO/Co₃O₄ heterojunctions for ppblevel acetone detection, Sensors and Actuators B-Chemical, 325(2020).
- [15] Y.Q. Yang, X.D. Wang, G.Y. Yi, H.M. Li, C. Shi, G. Sun, et al., Hydrothermal Synthesis of Co₃O₄/ZnO Hybrid Nanoparticles for Triethylamine Detection, Nanomaterials, 9(2019).
- [16] M. Gao, W.K. Wang, Q. Rong, J. Jiang, Y.J. Zhang, H.Q. Yu, Porous ZnO-Coated Co₃O₄ Nanorod as a High-Energy-Density Supercapacitor Material, ACS Appl Mater Interfaces, 10(2018) 23163-73.
- [17] B. Li, J.Y. Liu, Q. Liu, R.R. Chen, H.S. Zhang, J. Yu, et al., Core-shell structure of ZnO/Co₃O₄ composites derived from bimetallic-organic frameworks with superior sensing performance for ethanol gas, Applied Surface Science, 475(2019) 700-9.