Supporting information for

The effect of methyl group rotation on ${ }^{1} \mathrm{H}-{ }^{\mathbf{1}} \mathrm{H}$ solid-state NMR spin-diffusion spectra

Ettore Bartalucciab, Dominique Luderb, ${ }^{\text {b,c }}$, Nicole Terefenko ${ }^{\text {b }}$, Alexander A. Malär ${ }^{\text {d }}$, Carsten Bolme ${ }^{\text {e }}$, Matthias Ernstc ${ }^{\text {, }}$, and Thomas Wiegand ${ }^{\text {a,b,* }}$

${ }^{\text {a }}$ Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim/Ruhr, Germany
${ }^{\mathrm{b}}$ Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
${ }^{c}$ Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
${ }^{\text {d Fraunhofer Headquarters, Hansastr. 27c, } 80686 \text { Munich, Germany }}$
${ }^{\mathrm{e}}$ Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
*: Corresponding authors. maer@ethz.ch and thomas.wiegand@cec.mpg.de

$\begin{aligned} & \omega^{(0)}{ }^{(0)} / \\ & \omega^{(0)}{ }_{n} \\ & \hline \end{aligned}$	$\mathrm{CH}_{2 \mathrm{~b}}$	$\mathrm{CH}_{2 \mathrm{a}}$	H_{a}	NH_{3}	$\mathrm{PO}_{3} \mathrm{OH}$	COOH
$\mathrm{CH}_{2 \mathrm{~b}}$	12.8	12.6	11.6	8.5	4.1	0
$\mathrm{CH}_{2 \mathrm{a}}$	12.6	12.4	11.4	8.3	3.9	-0.2
H_{a}	11.6	11.4	10.4	7.3	2.9	-1.2
NH_{3}	8.5	8.3	7.3	4.2	-0.2	-4.3
$\mathrm{PO}_{3} \mathrm{OH}$	4.1	3.9	2.9	-0.2	-4.6	-8.7
COOH	0	-0.2	-1.2	-4.3	-8.7	-12.8
$\left.\mathbf{C H}_{2 \mathrm{a}} \mathbf{-} \mathbf{C O O H}\left[\left(\omega^{(0)}{ }_{\mathrm{CH2a}}-\omega^{(0)}\right)_{1}\right)+\left(\omega^{(0)} \mathrm{COOH}-\omega^{(0)}{ }_{\mathrm{n}}\right)\right]$						
$\begin{aligned} & \omega^{(0)_{1} / 2} \\ & \omega^{(0)}{ }_{n} \\ & \hline \end{aligned}$	$\mathrm{CH}_{2 \mathrm{~b}}$	$\mathrm{CH}_{2 \mathrm{a}}$	H_{a}	NH_{3}	$\mathrm{PO}_{3} \mathrm{OH}$	COOH
$\mathrm{CH}_{2 \mathrm{~b}}$	13	12.8	11.8	8.7	4.3	0.2
$\mathrm{CH}_{2 \mathrm{a}}$	12.8	12.6	11.6	8.5	4.1	0
H_{a}	11.8	11.6	10.6	7.5	3.1	-1
NH_{3}	8.7	8.5	7.5	4.4	0	-4.1
$\mathrm{PO}_{3} \mathrm{OH}$	4.3	4.1	3.1	0	-4.4	-8.5
COOH	0.2	0	-1	-4.1	-8.5	-12.6
$\mathbf{H a}_{\mathbf{a}} \mathbf{- C O O H}\left[\left(\omega^{(0)} \mathrm{Ha}-\omega^{(0)}\right)+\left(\omega^{(0)} \mathrm{COOH}^{-}-\omega^{(0)} \mathrm{n}_{\mathrm{n}}\right)\right]$						
$\begin{aligned} & \left.\omega^{(0)}\right)_{1} \\ & \omega^{(0)}{ }_{n} \\ & \hline \end{aligned}$	$\mathrm{CH}_{2 \mathrm{~b}}$	$\mathrm{CH}_{2 \mathrm{a}}$	H_{a}	NH_{3}	$\mathrm{PO}_{3} \mathrm{OH}$	COOH
$\mathrm{CH}_{2 \mathrm{~b}}$	14	13.8	12.8	9.7	5.3	1.2
$\mathrm{CH}_{2 \mathrm{a}}$	13.8	13.6	12.6	9.5	5.1	1
H_{a}	12.8	12.6	11.6	8.5	4.1	0
NH_{3}	9.7	9.5	8.5	5.4	,	-3.1
$\mathrm{PO}_{3} \mathrm{OH}$	5.3	5.1	4.1	1	-3.4	-7.5
COOH	1.2	1	0	-3.1	-7.5	-11.6
$\begin{aligned} & \omega^{(0)_{1} / 2} \\ & \omega^{(0)}{ }_{n} \\ & \hline \end{aligned}$	$\mathrm{CH}_{2 \mathrm{~b}}$	$\mathrm{CH}_{2 \mathrm{a}}$	H_{a}	NH_{3}	$\mathrm{PO}_{3} \mathrm{OH}$	COOH
$\mathrm{CH}_{2 \mathrm{~b}}$	8.7	8.5	7.5	4.4	0	-4.1
$\mathrm{CH}_{2 \mathrm{a}}$	8.5	8.3	7.3	4.2	-0.2	-4.3
H_{a}	7.5	7.3	6.3	3.2	-1.2	-5.3
NH_{3}	4.4	4.2	3.2	0.1	-4.3	-8.4
$\mathrm{PO}_{3} \mathrm{OH}$	0	-0.2	-1.2	-4.3	-8.7	-12.8
COOH	-4.1	-4.3	-5.3	-8.4	-12.8	-16.9
$\left.\mathrm{CH}_{2 \mathrm{a}} \mathrm{PO}_{3} \mathbf{O H}\left[\left(\omega^{(0)} \mathrm{CH2a}-\omega^{(0)}\right)_{1}\right)+\left(\omega^{(0)} \mathrm{PO}_{3} \mathrm{OH}-\omega^{(0)}{ }_{\mathrm{n}}\right)\right]$						
$\begin{aligned} & \omega^{(0)_{1} / 2} \\ & \omega^{(0)_{n}} \\ & \hline \end{aligned}$	$\mathrm{CH}_{2 \mathrm{~b}}$	$\mathrm{CH}_{2 \mathrm{a}}$	H_{a}	NH_{3}	$\mathrm{PO}_{3} \mathrm{OH}$	COOH
$\mathrm{CH}_{2 \mathrm{~b}}$	8.9	8.7	7.7	4.6	0.2	-3.9
$\mathrm{CH}_{2 \mathrm{a}}$	8.7	8.5	7.5	4.4	0	-4.1
H_{a}	7.7	7.5	6.5	3.4	-1	-3.2
NH_{3}	4.6	4.4	3.4	0.3	-4.1	-8.2
$\mathrm{PO}_{3} \mathrm{OH}$	0.2	0	-1	-4.1	-8.5	-12.6
COOH	-3.9	-4.1	-5.1	-8.2	-12.6	-16.7

Table S1: Calculations for negative cross peaks of 1 originating from the coherent third-order SD condition involving four spins. The values are obtained from the resonance condition $\left[\left(\omega^{(0)}{ }_{k}\right.\right.$ $\left.\left.-\omega^{(0)}\right)_{1}\right)+\left(\omega^{(0)}{ }_{\mathrm{m}}-\omega^{(0)}{ }_{\mathrm{n}}\right) \sim 0$] using the experimental chemical shifts of $\mathbf{1}\left(\omega_{\mathrm{CH} 2 \mathrm{a}}=4.2 \mathrm{ppm}\right.$, $\omega_{\mathrm{CH} 2 \mathrm{~b}}$ $\left.=4.0 \mathrm{ppm}, \omega_{\mathrm{Ha}}=5.2 \mathrm{ppm}, \omega_{\mathrm{NH} 3}=8.3 \mathrm{ppm} . \omega_{\mathrm{PO} O \mathrm{OH}}=12.7 \mathrm{ppm}, \omega_{\mathrm{COOH}}=16.8 \mathrm{ppm}\right)$. The values highlighted in red are those values close to the fulfilment of the resonance conditions.

$\mathbf{C H}_{3} \mathbf{- C O O H}\left[\left(\omega^{(0)} \mathrm{CH3}^{-}-\omega^{(0)}\right)+\left(\omega^{(0)} \mathrm{COOH}^{-}-\omega^{(0)_{\mathrm{n}}}\right)\right]$			
	CH_{3}	OH	COOH
CH_{3}	10	5.3	0
OH	5.3	0.6	-4.7
COOH	0	-4.7	-10
$\left.\mathrm{CH}_{3}-\mathbf{O H}\left[\left(\omega^{(0)} \mathrm{CH3}-\omega^{(0)}\right)^{1}\right)+\left(\omega^{(0)} \mathrm{OH}-\omega^{(0)}{ }_{\mathrm{n}}\right)\right]$			
$\omega^{(0)} / \omega^{(0)}{ }_{\mathrm{n}}$	CH_{3}	OH	COOH
CH_{3}	4.7	0	-5.3
OH	0	-4.7	-10
COOH	-5.3	-10	-15.3
OH-COOH [${\left.\left(\omega^{(0)} \mathrm{OH}^{-}-\omega^{(0)}\right)+\left(\omega^{(0)} \mathrm{COOH}-\omega^{(0)} \mathrm{n}\right)\right]}^{\text {a }}$			
$\omega^{(0)} / \omega^{(0)}{ }_{\mathrm{n}}$	CH_{3}	OH	COOH
CH_{3}	14.7	10	4.7
OH	10	5.3	0
COOH	4.7	0	-4.7

Table S1 - continued: Calculations for negative cross peaks of $\mathbf{2}$ originating from the coherent third-order SD condition involving four spins. The values are obtained from the resonance condition $\left[\left(\omega^{(0)}{ }_{\mathrm{k}}-\omega^{(0)}\right)+\left(\omega^{(0)}{ }_{\mathrm{m}}-\omega^{(0)}{ }_{\mathrm{n}}\right) \sim 0\right]$ using the experimental chemical shifts of $\mathbf{2}\left(\omega_{\mathrm{CH} 3}\right.$ $=1.6 \mathrm{ppm}, \omega_{\mathrm{OH}}=6.3 \mathrm{ppm}$ and $\left.\omega_{\mathrm{COOH}}=11.6 \mathrm{ppm}\right)$. The values highlighted in red are those values close to the fulfilment of the resonance conditions.

$\omega^{(0)} / \omega^{(0)}{ }_{n}$	CH_{3}	CH_{2}	$\mathrm{H}_{\text {arom }}(5 / 6)$	$\mathrm{H}_{\text {arom }}(4 / 7)$
CH_{3}	4.7	3.2	0.9	0
CH_{2}	3.2	1.7	-0.6	-1.5
$\mathrm{H}_{\text {arom }}(5 / 6)$	0.9	-0.6	-2.9	-3.8
$\mathrm{H}_{\text {arom }}(4 / 7)$	0	-1.5	-3.8	-4.7
$\omega^{(0)} / \omega^{(0)}{ }_{n}$	CH_{3}	CH_{2}	$\mathrm{H}_{\text {arom }}(5 / 6)$	$\mathrm{H}_{\text {arom }}(4 / 7)$
CH_{3}	3.8	2.3	0	-0.9
CH_{2}	2.3	0.8	-1.5	-2.4
$\mathrm{H}_{\text {arom }}(5 / 6)$	0	-1.5	-3.8	-4.7
$\mathrm{H}_{\text {arom }}(4 / 7)$	-0.9	-2.4	-4.7	-5.6

Table S1 - continued: Calculations for negative cross peaks of $\mathbf{3}$ originating from the coherent third-order SD condition involving four spins. The values are obtained from the resonance condition $\left[\left(\omega^{(0)}{ }_{\mathrm{k}}-\omega^{(0)}\right)+\left(\omega^{(0)}{ }_{\mathrm{m}}-\omega^{(0)}{ }_{\mathrm{n}}\right) \sim 0\right]$ using the experimental chemical shifts of $\mathbf{3}\left(\omega_{\mathrm{CH}}\right.$ $=2.7 \mathrm{ppm}, \omega_{\mathrm{CH} 2}=4.2 \mathrm{ppm} . \omega_{\text {Harom } 5 / 6}=6.5 \mathrm{ppm}$ and $\left.\omega_{\text {Harom } 4 / 7}=7.4 \mathrm{ppm}\right)$. The values highlighted in red are those values close to the fulfilment of the resonance conditions.

$\begin{aligned} & \omega^{(0)} / \\ & \omega^{(0)} / \\ & \hline \end{aligned}$	$\mathrm{CH}_{3 \mathrm{~b}+\mathrm{a}}$	$\mathrm{CH}_{3 \mathrm{a}}$	CH	$\mathrm{Harom}^{\text {a }}$	$\mathrm{Haram}^{\text {b }}$
$\mathrm{CH}_{3}{ }^{\text {b+a }}$	5.6	4.6	3.8	0	0.7
$\mathrm{CH}_{3}{ }^{\text {a }}$	4.6	3.6	2.8	-1	-0.3
CH	3.8	2.8	2	-1.8	-1.1
$\mathrm{Harom}^{\text {a }}$	0	-1	-1.8	-5.6	-4.9
$\mathrm{Haram}_{\text {a }}{ }^{\text {b }}$	0.7	-1.7	-2.5	-4.7	-4

Table S1 - continued: Calculations for negative cross peaks of $\mathbf{4}$ originating from the coherent third-order SD condition involving four spins. The values are obtained from the resonance condition $\left[\left(\omega^{(0)}{ }_{\mathrm{k}}-\omega^{(0)}\right)+\left(\omega^{(0)}{ }_{\mathrm{m}}-\omega^{(0)}{ }_{\mathrm{n}}\right) \sim 0\right]$ using the experimental chemical shifts of $\mathbf{4}$ $\left(\omega_{\mathrm{CH} 3 \mathrm{~b}+\mathrm{a}}=1 \mathrm{ppm}, \omega_{\mathrm{CH} 3 \mathrm{a}}=2 \mathrm{ppm}, \omega_{\mathrm{CH}}=2.8 \mathrm{ppm}, \omega_{\text {Haroma }}=6.6 \mathrm{ppm} . \omega_{\text {Haromb }}=5.9 \mathrm{ppm}\right)$. The values highlighted in red are those values close to the fulfilment of the resonance conditions. a: H5/H9 and ${ }^{\mathrm{b}}$: H6/H8 .

Compound / $\delta\left({ }^{1} \mathbf{H}\right) \mathbf{p p m}$	Sulfoximine 3	$\begin{gathered} \mathrm{RuCl}_{2} \text {-cymene } \\ \mathbf{4} \end{gathered}$	$\begin{gathered} \text { Bora[4]pyramidane } \\ \mathbf{5} \end{gathered}$	$\begin{gathered} \text { Durene } \\ \mathbf{6} \end{gathered}$
$\mathrm{H}_{\text {arom }}$	$\begin{aligned} & \mathrm{H}_{\text {arom }}(4 / 7)=7.4 \\ & \mathrm{H}_{\text {arom }}(5 / 6)=6.5 \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\text {arom }}=6.6 \\ & \mathrm{H}_{\text {arom }^{\mathrm{a}}}=5.9 \end{aligned}$	1	6.6
CH	/	2.8	5.6	1
CH_{2}	4.2	/	1	1
CH_{3}	2.7	$\begin{gathered} \mathrm{CH}_{3}{ }^{\mathrm{a}+\mathrm{b}}= \\ 1.1 / 0.9 \\ \mathrm{CH}_{3}{ }^{\mathrm{a}^{\mathrm{a}}}=2.0 \end{gathered}$	-0.1	1.3

Table S2: Proton chemical shift values tabulated for the assigned resonances in the ${ }^{1} \mathrm{H}$ MAS spectra in Figure 3.

Compound / $\boldsymbol{\delta}\left({ }^{\mathbf{}} \mathbf{H}\right) \mathbf{p p m}$	$\mathbf{C H}_{\mathbf{3}}$	$\mathbf{O H}$	$\mathbf{C O O H}$	$\mathbf{\Delta \delta (\mathbf { C H } _ { \mathbf { 3 } } \cdots \mathbf { O H }) /}$ $\mathbf{p p m}$	$\mathbf{\Delta \delta (\mathbf { O H } \cdots \mathbf { C O O H }) /}$ $\mathbf{p p m}$
Rac-TLa 6	1.6	6.3	11.6	4.7	5.3

Table S2 Continued: Proton chemical shift values tabulated for the α-TLa 2 racemate compound resonances. Reported is also the chemical shift differences between methyl and hydroxyl protons and the hydroxyl and carboxylic protons.

Discussion of negative cross peaks observed for compounds 2 and 3.

In case of α-TLA, at 50 ms mixing time negative cross peaks are observed between the methyl group protons at 1.6 ppm and the carboxylic protons at 11.6 ppm . And indeed, the chemicalshift difference of the hydroxyl proton and the methyl-group protons roughly matches the differences in chemical shifts between the carboxylic proton and the hydroxyl proton (with chemical-shift differences of $\omega_{\mathrm{OH}}-\omega_{\mathrm{CH}_{3}}=4.7 \mathrm{ppm}$ and $\omega_{\mathrm{COOH}}-\omega_{\mathrm{OH}}=5.3 \mathrm{ppm}$, respectively). At shorter mixing times (i.e. Figure 3a with $\tau_{\text {mix }}=1 \mathrm{~ms}$) for α-TLA, further negative cross peaks between the CH_{3} and OH protons and the OH and COOH protons are observed, which become positive upon increasing the mixing time (Figure 3b and Figure S3). This observation can be explained since the second-order SD term becomes again a progressively dominant factor at longer mixing times, thus resulting in positive off diagonal peaks, which is in agreement with the reported example of histidine $\cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{1}$ The different cross peak build-up rates for the negative peaks of α-TLA can be rationalized therefore by an interplay between chemical-shift separation and SD mixing time.

A similar case, albeit slightly more complex, is represented by sulfoximine 3. Also for this system the coherent third-order condition mentioned above can be fulfilled (Table S1) for the collection of proton spins: $\mathrm{CH}_{3}=2.7 \mathrm{ppm}, \mathrm{CH}_{2}=4.2 \mathrm{ppm}, \mathrm{H}_{\text {arom }}(5 / 6)=6.5 \mathrm{ppm}$ and $\mathrm{H}_{\text {arom }}(4 / 7)$ $=7.4 \mathrm{ppm}$, leading to negative cross peaks in the 2D spectrum (Figure 4a). However, a full compensation of chemical shifts according to the above-mentioned equation is not observed (difference of 0.6 ppm in the chemical-shift differences). The last example in this line, namely the RuCl_{2}-cymene complex 4 reveals a negative cross peak between the methyl group $\mathrm{CH}_{3}{ }^{\mathrm{b}}$ (1 ppm) and the aromatic protons $\mathrm{H} 5 / \mathrm{H} 9(6.6 \mathrm{ppm}$), see Figure 4 b . Again, by taking into account the $\mathrm{CH}_{3}{ }^{\mathrm{a}}$ protons (2 ppm) and aromatic protons $\mathrm{H} 6 / \mathrm{H} 8(5.9 \mathrm{ppm})$ as further spins in the quadruple of spins, the resonance condition is approximately fulfilled (difference of 0.7 ppm in the chemical-shift differences.

Supplementary Figures

Figure S1: Atom nomenclature used in the ${ }^{1} \mathrm{H}$ MAS spectra of compounds 3 and 4.

Figure S2: ${ }^{1} H$ line widths dependence upon increasing the MAS frequency. 1D ${ }^{1} \mathrm{H}$ MAS spectra recorded with different MAS frequencies of O-phospho-L-serine $\mathbf{1}$ measured at 16.4 T static magnetic-field strength.

Figure S3: 1D ${ }^{1} \mathrm{H}$ MAS spectra of sulfoximine $\mathbf{3}$ recorded with a $\mathrm{d} 1=7 \mathrm{~s}$ (red) and a 1D slice of the ${ }^{1} \mathrm{H}$ saturation recovery experiment recorded with a delay of 100 s (blue). We clearly see the shoulder for the $\mathrm{H} 4 / \mathrm{H} 7$ aromatic protons showing up.

Figure S4: Mixing-time dependence of the integrated intensities for negative cross peaks (normalized with respect to the methyl-group diagonal peak at $\mathrm{t}_{\mathrm{mix}}=1 \mathrm{~ms}$) of α-TLA. The 2D SD spectra from which the intensities have been extracted were recorded at 60 kHz MAS frequency and 16.4 T static magnetic-field strength.

igure S5: $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ SD spectrum of $\mathbf{4}$ recorded with 10 ms mixing time at 60 kHz MAS frequency at 16.4 T static magnetic-field strength.

Figure S6: 2D ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ SD spectra of $\mathbf{3}(\mathbf{a}, \mathbf{c})$ and $\mathbf{4}(\mathbf{b}, \mathbf{d})$ recorded with a $1.5 \mathrm{~s}, \mathbf{b} 800 \mathrm{~ms}, \mathbf{c} 1$ ms and $\mathbf{d} 1 \mathrm{~ms}$ mixing times. All spectra have been recorded at 60 kHz MAS frequency on a 16.4 T static magnetic field strength.

Figure S7: 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ SD spectra of 2 recorded with $\mathbf{a} 200 \mathrm{~ms}$, $\mathbf{b} 1 \mathrm{~s}$ and $\mathbf{c} 2.5 \mathrm{~s}$ mixing times. All spectra have been recorded at 60 kHz MAS frequency at 16.4 T static magnetic-field strength.

Details of the analytic simulations

We assume a $\mathrm{H}_{3}-\mathrm{H}$ spin system where the three equivalent protons are part of a CH_{3} group that undergoes stochastic jumps around the symmetry axis. All dipolar couplings can be characterized in a coordinate system where the z axis is aligned with the symmetry axis of the CH_{3} group and the x axis can be chosen arbitrarily. The correlation function is then given by

$$
C_{2,2, m, m}^{\left(\mu, \mu^{\prime}\right)}(\tau)=A_{2, m}^{(\mu)}(t) A_{2, m}^{\left(\mu^{\prime}\right) *}(t-\tau) .
$$

To calculate the correlation function, we apply three Euler transformations from the principal-

$$
\left(D_{0, m}^{2}\left(0, \theta^{(\mu)}(t), \phi^{(\mu)}(t)\right)\right.
$$

axes system to the methyl-fixed frame ($\left.0, m^{\prime \prime}\left(0, \theta^{(}\right)(t), \phi^{(\mu)}(t)\right)$, then to the rotor fixed frame $\underset{\left(m^{\prime \prime}, m\right.}{D}{ }^{2}(\alpha, \beta, \gamma)$ and finally to the laboratory frame $\left({ }_{m}{ }_{m}{ }^{2}, m\left(-\omega_{r} t,-\theta_{m}, 0\right)\right.$. Therefore, the spherical tensors in the laboratory frame can be written as:
$A_{2, m}^{(\mu)}(t)=\sum_{m^{\prime}=-2}^{2} \sum_{m^{\prime}=-2}^{2} D_{m^{\prime}, m}^{2}\left(-\omega_{r} t,-\theta_{m^{\prime}} 0\right) D_{m^{\prime \prime}, m}^{2}(\alpha, \beta, \gamma) D_{0, m}^{{ }^{2} \prime \prime}\left(0, \theta^{(\mu)}(t), \phi^{(\mu)}(t)\right) \rho_{2,0}^{(\mu)}$.
To calculate the correlation function, we introduce discrete values for the angles $\theta^{(\mu)}(t)$ and $\phi^{(\mu)}(t), \theta_{i}^{(\mu)}$ and $\phi_{i}^{(\mu)}$ and a correlation function defined by
$C_{i, j}(t)=\frac{1}{3}\left(\frac{1}{3}+\left(\delta_{i, j}-\frac{1}{3}\right) e^{-\frac{t}{\tau_{j}}}\right)$
where $\tau_{j}=\frac{1}{3 k_{j}}$ is the correlatio given by

$$
\begin{aligned}
C_{2,2, m, m}^{\left(\mu, \mu^{\prime}\right)}(t)= & \rho_{2,0}^{(\mu)} \rho_{2,0}^{\left(\mu^{\prime}\right)} \sum_{i, j=1 m^{\prime}, k^{\prime}=-2 m^{\prime \prime}, k^{\prime \prime}=-2}^{3} D_{m^{\prime}, m}^{2}\left(-\omega_{r} t,-\theta_{m^{\prime}} 0\right) D_{m^{\prime \prime}, n}^{2} \\
& D_{0, m}^{2}{ }^{2}\left(0, \theta_{i}^{(\mu)}, \phi_{i}^{(\mu)}\right)\left(D_{k^{\prime}, k}^{2}\left(-\omega_{r} t,-\theta_{m^{\prime}}, 0\right) D_{k^{\prime \prime}, k}^{2}(\alpha, \beta, \gamma) D_{0, k}^{2}{ }^{2}(\right.
\end{aligned}
$$

The orientation-dependent and MAS-dependent spectral density function can now be calculated as:

$$
\begin{array}{r}
J_{m}^{\left(\mu, \mu^{\prime}\right)}(\omega)=\rho_{2,0}^{(\mu)} \rho_{2,0}^{\left(\mu^{\prime}\right)} \sum_{i, j=1}^{3} \sum_{m^{\prime}, k^{\prime}=-2 m^{\prime \prime}, k^{\prime \prime}=-2}^{2} D_{m^{\prime}, m}^{2}\left(-\omega_{r} t,-\theta_{m^{\prime}} 0\right) D_{m^{\prime \prime}, m^{\prime \prime}}^{2}, \\
D_{0, m^{\prime \prime}}^{2}\left(0, \theta_{i}^{(\mu)}, \phi_{i}^{(\mu)}\right)\left(D _ { k ^ { \prime } , k } ^ { 2 } (- \omega _ { r } t , - \theta _ { m ^ { \prime } } , 0) D _ { k ^ { \prime \prime } , k } ^ { 2 } (\alpha , \beta , \gamma) D _ { 0 , k ^ { \prime \prime } } ^ { 2 } \left(0, \theta_{j}^{\left(\mu^{\prime}\right)},\right.\right.
\end{array}
$$

Analytical integration over the Euler angles (α, β, γ) describing the crystallite orientation (powder average) and the rotor cycle leads to the spectral-density functions that can be inserted into Eqs. (2)-(4) of the main manuscript.

The coordinates of the four protons considered in the analytical calculations are given by:

C1	$(+0.0000,+0.0000,+-0.3264) \AA$
H1A	$(-0.8677,-0.3185,+0.0000) \AA$
H1B	$(+0.1578,+0.9107,+0.0000) \AA$
H1C	$(+0.7100,-0.5913,+0.0000) \AA$
H6	$(+0.9006,+2.2099,+2.2954) \AA$

Details of the numerical simulations

All numerical simulations were carried out in the spin-simulation environment GAMMA. ${ }^{2}$ The simulations were carried out in the laboratory frame including the Zeeman Hamiltonian, the isotropic chemical shifts and the untruncated dipolar couplings between all spins. The magnitude and orientation of the dipolar couplings were calculated based on the geometry of the spin system. For the simulations of the four proton spins representing the relevant part of sulfoximine $\mathbf{3}$, the coordinates used for the analytical calculations were used. The isotropic chemical-shift difference between the methyl and the aromatic protons was set to 10 kHz to minimize spin-diffusion based polarization transfer. For the six-spin simulations, which also included the methylene group, the coordinates of the atoms are given by:
$\begin{array}{ll}\text { C1 } & (3.446,1.682,9.719) \AA \\ \text { H1A } & (2.692,1.925,10.296) \AA \\ \text { H1B } & (4.237,2.199,9.982) \AA \\ \text { H1C } & (3.635,0.725,9.814) \AA \\ \text { H2A } & (2.339,4.233,7.573) \AA \\ \text { H2B } & (3.688,4.265,8.464) \AA \\ \text { H6 } & (4.015,5.668,5.780) \AA\end{array}$
They were selected such that the distance between the methyl-group protons and the methylene protons ($2.6 \AA$) and the methylene and the aromatic proton $(2.8 \AA)$ was minimized to facilitate third-order spin diffusion. The chemical shifts were set to 1630 Hz (methyl), 3430 Hz (methylene) and 5230 Hz (aromatic) which matches the third-order spin-diffusion condition perfectly.

The time-dependence due to MAS was simulated using time slicing of the time-dependent Hamiltonian. In addition, an exchange process simulating the stochastic exchange of the three methyl-group protons was added in the Liouville space. Powder averaging was done using the ZCW grid with either 100 (six-spin system) or 300 powder orientations (four-spin system). Computation times were about one hour for the four-spin system and 800 hours for the six-spin system.

To demonstrate how the cross relaxation depends on the minimum distance between the methyl protons and the fourth proton, model spin systems based on an ideal methyl group were calculated. The fourth spin was located on the rotation axis of the methyl group and moved away from the plane of the three methyl protons. In a second set of simulations, the fourth proton was located in the plane of the three methyl protons and moved away from the nearest proton in the plane. Figure S 8 shows the cross-relaxed magnetization as a function of the mixing time for different minimum distances between the fourth proton and the nearest methyl-
group proton. One can clearly see that very short distances are required to obtain significant polarization transfer.

The coordinates of the four protons for the axial model are given by (H1A, H1B, H1C are the coordinates of the methyl protons, H4X are the coordinates of the fourth proton used in the five different simulations):

C1	$(0.0000,0.0000,0.0000) \AA$
H1A	$(1.0698,0.0000,0.3789) \AA$
H1B	$(0.5345,0.9265,0.3789) \AA$
H1C	$(0.5345,-0.9265,0.3789) \AA$
H4A	$(0.0000,0.0000,0.3789) \AA$
H4B	$(0.0000,0.0000,1.4303) \AA$
H4C	$(0.0000,0.0000,2.0687) \AA$
H4D	$(0.0000,0.0000,2.6384) \AA$
H4E	$(0.0000,0.0000,3.1817) \AA$

The coordinates of the four protons for the planar model are given by (H1A, H1B, H1C are the coordinates of the methyl protons, H4X are the coordinates of the fourth proton used in the five different simulations):

C1 $(0.0000,0.0000,0.0000) \AA$
H1A $(1.0698,0.0000,0.3789) \AA$
H1B $(0.5345,0.9265,0.3789) \AA$
H1C $(0.5345,-0.9265,0.3789) \AA$
H4A $(2.0698,0.0000,0.3789) \AA$
H4B $(2.5698,0.0000,0.3789) \AA$
H4C $(3.0698,0.0000,0.3789) \AA$
H4D $(3.5698,0.0000,0.3789) \AA$
H4E (4.0698, 0.0000, 0.3789) Å

Figure S8: Numerical simulations of the cross relaxation between the methyl-group protons and a fourth proton either located on the rotation axis (a) or in the plane of the three methyl protons (b) as a function of the minimum distance. Significant cross relaxation for the chosen jump correlation time of $\tau_{j} \approx 8.7 \cdot 10^{-11} \mathrm{~s}$ was only obtained for very short distances.

Table S3: Overview about experimental parameters of the solid-state NMR measurements.

$\begin{gathered} \text { 1D }{ }^{1} \mathrm{H} \\ \text { Hahn-echo } \end{gathered}$	O- phospho- L-serine 1	racemic α-TLA 2	sulfoximin e 3	$\mathrm{RuCl}_{2}-$ cymene 4	Bora[4]pyra midane 5	durene 6
$\nu_{\mathrm{r}} / \mathrm{kHz}$	60	60	60	60	60	60
B_{0} / T	16.4	16.4	16.4	16.4	16.4	16.4
$\nu_{1}\left({ }^{1} \mathrm{H}\right) / \mathrm{kHz}$	100	100	100	100	100	100
${ }^{1} \mathrm{H}$ carrier $/$ ppm	9.2	-6.6	25.2	21.6	3.1	24.8
t_{1} increments	16384	16384	16384	16384	16384	16384
Sweep width $\left(t_{1}\right) / \mathrm{ppm}$	142.8	142.8	142.8	142.8	142.8	142.8
Acquisition time $\left(t_{1}\right) / \mathrm{ms}$	81.9	81.9	81.9	81.9	81.9	81.9
Interscan delay / s	2.7	6.5	7	7	10	7
Number of scans	16	16	4	16	16	16
Measuremen t time / sec	50	450	42	120	180	120
Probe target temperature / K	285	285	285	285	280	285

Continue of Table S3

$\mathbf{1 D}{ }^{\mathbf{1} H}$ Hahn- echo	$O-$ phospho- L-serine $\mathbf{1}$	$O-$ phospho- L-serine $\mathbf{1}$	$O-$ phospho- L-serine $\mathbf{1}$	$O-$ phospho- L-serine $\mathbf{1}$			
$v_{\mathrm{r}} / \mathrm{kHz}$	42	50	60	70	80	90	100
B_{0} / T	16.4	16.4	16.4	16.4	16.4	16.4	16.4
$v_{1}\left({ }^{1} \mathrm{H}\right) /$ kHz	150	150	150	150	150	150	150
${ }^{1} \mathrm{H}$ carrier $/$ ppm	6.8	6.8	6.8	6.8	6.8	6.8	6.8
t_{1} incremen ts	16384	16384	16384	16384	16384	16384	16384
Sweep width $\left(t_{1}\right)$ $/$ ppm	142.8	142.8	142.8	142.8	142.8	142.8	142.8
Acquisiti on time $\left(t_{1}\right) / \mathrm{ms}$	81.9	81.9	81.9	81.9	81.9	81.9	81.9
Interscan	1.5	1.5	1.5	1.5	1.5	1.5	1.5

delay / s							
Number of scans	16	16	4	16	16	16	16
Measure ment time / sec	30	30	30	30	30	30	30
Probe target temperat ure / K	273	271	271	271	270	270	270

Continue of Table S3

2D ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ SpinDiffusion O-phospho-Lserine 1	50 ms	50 ms	$2 \mathrm{D}^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ RDFR O-phospho-Lserine 1	$320 \mu \mathrm{~s}$
$v_{\mathrm{r}} / \mathrm{kHz}$	60	100	$v_{\mathrm{r}} / \mathrm{kHz}$	100
B_{0} / T	16.4	16.4	B_{0} / T	16.4
Transfer	Spin Diffusion	Spin Diffusion	Transfer	Radiofrequency driven recoupling
$v_{1}\left({ }^{1} \mathrm{H}\right) / \mathrm{kHz}$	100	150	$v_{1}\left({ }^{1} \mathrm{H}\right) / \mathrm{kHz}$	150
SD Mixing Time / ms	50	50	RFDR Mixing Time / ms	0.32
${ }^{1} \mathrm{H}$ carrier/ ppm	9.2	6.8	${ }^{1} \mathrm{H}$ carrier/ ppm	6.8
t_{1} increments	512	512	t_{1} increments	400
Sweep width $\left(t_{1}\right) /$ ppm	42.8	42.8	Sweep width $\left(t_{1}\right) / \mathrm{ppm}$	42.8
Acquisition time $\left(t_{1}\right) / \mathrm{ms}$	8.5	8.5	Acquisition time $\left(t_{1}\right) / \mathrm{ms}$	6.6
t_{2} increments	16384	16384	t_{2} increments	16384
$\begin{gathered} \text { Sweep width }\left(t_{2}\right) / \\ \text { ppm } \end{gathered}$	142.8	142.8	Sweep width $\left(t_{2}\right) / \mathrm{ppm}$	142.8
Acquisition time $\left(t_{2}\right) / \mathrm{ms}$	81.9	81.9	Acquisition time $\left(t_{2}\right) / \mathrm{ms}$	81.9
Interscan delay/s	2.7	3	Interscan delay/s	3
Number of scans	16	16	Number of scans	16
Measurement time/ min	388	428	Measurement time/ min	329
Probe target temperature / K	285	270	Probe target temperature /	270

\square

Continue of Table S3

2D ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ SpinDiffusion racemic α-TLA 2	1 ms	50 ms	200 ms	1 s	2.5 s
$v_{\mathrm{r}} / \mathrm{kHz}$	60	60	60	60	60
B_{0} / T	16.4	16.4	16.4	16.4	16.4
Transfer	Spin Diffusion	Spin Diffusion	Spin Diffusion	Spin Diffusion	Spin Diffusion
$v_{1}\left({ }^{1} \mathrm{H}\right) / \mathrm{kHz}$	100	100	100	100	100
SD Mixing Time / ms	1	50	200	1000	2500
${ }^{1} \mathrm{H}$ carrier/ ppm	-6.6	-6.6	1.7	1.7	1.7
t_{1} increments	240	240	304	304	320
Sweep width $\left(t_{1}\right) /$ ppm	42.8	42.8	42.8	42.8	42.8
Acquisition time $\left(t_{1}\right) /$ ms	4.0	4.0	5.0	5.0	5.0
t_{2} increments	16384	16384	16384	16384	16384
Sweep width (t_{2})/ ppm	142.8	142.8	142.8	142.8	142.8
Acquisition time $\left(t_{2}\right) /$ ms	81.9	81.9	81.9	81.9	81.9
Interscan delay/s	6.5	6.5	6.5	6.5	6.5
Number of scans	16	16	16	16	16
Measurement time/ min	422	425	550	615	775
Probe target temperature / K	285	285	285	285	285

Continue of Table S3

2D ${ }^{\mathbf{1}} \mathbf{H}^{\mathbf{1}} \mathbf{H}$ Spin- Diffusion sulfoximine 3	$\mathbf{1 ~ m s}$	$\mathbf{5} \mathbf{~ m s}$	$\mathbf{2 0} \mathbf{~ m s}$	$\mathbf{5 0} \mathbf{~ m s}$	$\mathbf{1 0 0} \mathbf{~ m s}$	$\mathbf{2 0 0} \mathbf{~ m s}$
$v_{\mathrm{r}} / \mathrm{kHz}$	60	60	60	60	60	60
B_{0} / T	16.4	16.4	16.4	16.4	16.4	16.4
Transfer	Spin Diffusio n	Spin Diffusio n	Spin Diffusion	Spin Diffusion	Spin Diffusion	Spin Diffusio n
$\left.v_{1}{ }^{1} \mathrm{H}\right) / \mathrm{kHz}$	100	100	100	100	100	100
SD Mixing Time $/ \mathrm{ms}$	1	5	20	50	100	200
${ }^{1} \mathrm{H}$ carrier/ ppm	25.3	25.3	25.3	25.3	25.3	25.3

t_{1} increments	500	500	500	500	500	500
Sweep width $\left(t_{1}\right)$ $/ \mathrm{ppm}$	42.8	42.8	42.8	42.8	42.8	42.8
Acquisition time $\left(t_{1}\right) / \mathrm{ms}$	8.3	8.3	8.3	8.3	8.3	8.3
t_{2} increments	16384	16384	16384	16384	16384	16384
Sweep width $\left(t_{2}\right) / \mathrm{ppm}$	142.8	142.8	142.8	142.8	142.8	142.8
Acquisition time $\left(t_{2}\right) /$ ms	81.9	81.9	81.9	81.9	81.9	81.9
Interscan delay/ s	7	7	7	7	7	7
Number of scans	16	16	16	16	16	16
Measurement time/min	946	947	949	953	959	973
Probe target temperature $/ \mathrm{K}$	285	285	285	285	285	285

Continue of Table S3

2D ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ SpinDiffusion RuCl_{2}-cymene 4	1 ms	5 ms	10 ms	50 ms	800 ms
$v_{\mathrm{r}} / \mathrm{kHz}$	60	60	60	60	60
B_{0} / T	16.4	16.4	16.4	16.4	16.4
Transfer	Spin Diffusion	Spin Diffusion	$\begin{gathered} \text { Spin } \\ \text { Diffusion } \\ \hline \end{gathered}$	Spin Diffusion	Spin Diffusion
$v_{1}\left({ }^{1} \mathrm{H}\right) / \mathrm{kHz}$	100	100	100	100	100
SD Mixing Time / ms	1	5	10	50	800
${ }^{1} \mathrm{H}$ carrier/ ppm	21.6	25.3	25.3	25.3	25.3
t_{1} increments	500	500	500	500	500
Sweep width $\left(t_{1}\right) /$ ppm	42.8	42.8	42.8	42.8	42.8
$\begin{aligned} & \text { Acquisition time }\left(t_{1}\right) / \\ & \mathrm{ms} \end{aligned}$	8.3	8.3	8.3	8.3	8.3
t_{2} increments	16384	16384	16384	16384	16384
Sweep width (t_{2})/ ppm	142.8	142.8	142.8	142.8	142.8
$\begin{gathered} \text { Acquisition time }\left(t_{2}\right) / \\ \mathrm{ms} \\ \hline \end{gathered}$	81.9	81.9	81.9	81.9	81.9
Interscan delay/s	7	7	7	7	7
Number of scans	16	16	16	16	16
Measurement time/ \min	946	947	947	953	1053
Probe target	285	285	285	285	285

\square

Continue of Table S3

2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ SpinDiffusion bora[4]pyramidane 5	50 ms	2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ SpinDiffusion durene 6	50 ms
$v_{\mathrm{r}} / \mathrm{kHz}$	60	$\nu_{\mathrm{r}} / \mathrm{kHz}$	60
B_{0} / T	16.4	B_{0} / T	16.4
Transfer	Spin Diffusion	Transfer	Spin Diffusion
$v_{1}\left({ }^{1} \mathrm{H}\right) / \mathrm{kHz}$	100	$v_{1}\left({ }^{1} \mathrm{H}\right) / \mathrm{kHz}$	100
SD Mixing Time / ms	50	$\underset{\mathrm{ms}}{\text { SD Mixing Time }}$	50
${ }^{1} \mathrm{H}$ carrier/ ppm	5.1	${ }^{1} \mathrm{H}$ carrier/ ppm	24.8
t_{1} increments	512	t_{1} increments	436
Sweep width $\left(t_{1}\right)$ / ppm	20	Sweep width $\left(t_{1}\right) /$ ppm	42.8
Acquisition time $\left(t_{1}\right) /$ ms	18.3	Acquisition time $\left(t_{1}\right) / \mathrm{ms}$	7.2
t_{2} increments	14336	t_{2} increments	16384
Sweep width (t_{2})/ ppm	140.9	$\begin{gathered} \text { Sweep width }\left(t_{2}\right) / \\ \text { ppm } \end{gathered}$	142.8
$\underset{\mathrm{ms}}{\text { Acquisition time }\left(t_{2}\right) /}$	72.6	Acquisition time $\left(t_{2}\right) / \mathrm{ms}$	81.9
Interscan delay/s	7	Interscan delay/s	7
Number of scans	16	Number of scans	16
Measurement time/ min	975	Measurement time/ min	832
Probe target temperature / K	280	Probe target temperature / K	285

Continue of Table S3

1D ${ }^{1} \mathbf{H ~ T 1}$ Saturation Recovery	racemic α-TLA $\mathbf{2}$	sulfoximine 3
$v_{\mathrm{r}} / \mathrm{kHz}$	60	60
B_{0} / T	16.4	16.4
$v_{1}\left({ }^{1} \mathrm{H}\right) / \mathrm{kHz}$	100	100
${ }^{1} \mathrm{H}$ carrier $/ \mathrm{ppm}$	25.3	-6.6
t_{1} increments	4096	4096
Sweep width $\left(t_{1}\right) /$ ppm	142.8	142.8
Acquisition time $\left(t_{1}\right) / \mathrm{ms}$	20.5	20.5

Number of scans	8	8
Probe target temperature / K	285	285

References

1. V. Agarwal, J. Magn. Reson., 2020, 311, 106661.
2. S. A. Smith, T. O. Levante, B. H. Meier and R. R. Ernst, J. Magn. Reson. A, 1994, 106, 75-105.
