Improved visible-light triggered photocatalytic activities of BiOCl microplates via synergistic effect of doping and heterojunction engineering Qian Wu^a, Xiaoqing Lai^a, Xiao-Hui Ji^b, Hai Jiang^{a*}, Peng Du^{a*}

^aDepartment of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo

University, 315211 Ningbo, Zhejiang, China

^bShaanxi Province Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, P.R. China

Corresponding authors

E-mail: jianghai@nbu.edu.cn (H. Jiang); dp2007good@sina.com or dupeng@nbu.edu.cn (P. Du)

Preparation of Sm³⁺-doped BiOCl microplates

Bi_{1-x}OCl:xSm³⁺ (BiOCl:xSm³⁺; $0 \le x \le 0.05$) microplates were synthesized through high-temperature solid-state reaction method. Herein, Bi₂O₃, NH₄Cl and Sm₂O₃ were used as the raw materials. These raw materials were weighted according to the stoichiometric ratio. Note that, to make up the loss of volatilization, excess 20% of NH₄Cl was added. The weighed raw materials were thoroughly mixed for 30 min via an agate mortar. After that, they were sintered at 673 K for 3 hours in a furnace. When the sintering process was finished, white powders were obtained and collected for further characterization.

Synthesis of g-C₃N₄

To synthesize the g-C₃N₄, a conventional high-temperature solid-state reaction method was used. In brief, 2 g of melamine was weighed and placed in a crucible, and then heated at 823 K for 5 h in a furnace. After that, the g-C₃N₄ was prepared.

Sample characterization

X-ray diffractometer (Bruker D8 Advance; Cu $K\alpha$ irradiation), UV-vis spectrophotometer (Cary 5000), field-emission scanning electron microscopy (FE-

SEM, Hitachi SU-70) and a multifunctional imaging electron spectrometer (Thermo ESCALAB 250XI) were utilized to investigate the phase structure, microstructure, light absorption capacity and elemental compositions of final products, respectively. The Raman spectra of the prepared samples were tested by a microfluorescence spectrometry system (Ocean Optics QE pro). The luminescence properties of studied samples were examined through a fluorescence spectrometer (Edinburgh FS5). The electron paramagnetic resonance (EPR) spectrum of oxygen vacancy was recorded on a Bruker EMXplus A300 spectrometer.

bioci.o.orosin ^e iniciopiates via Kietvelu XKD fermement.			
Parameters	BiOCl	BiOCl:0.005Sm ³⁺	BiOC1:0.010Sm ³⁺
<i>a</i> (Å)	3.8928	3.8926	3.8916
<i>b</i> (Å)	3.8928	3.8926	3.8916
<i>c</i> (Å)	7.3690	7.3667	7.3636
$V(Å^3)$	111.67	111.62	111.52
$\alpha = \beta = \gamma$	90°	90°	90°
R_p	0.0867	0.0922	0.0846
R_{wp}	0.1304	0.1295	0.1241
χ^2	1.973	2.275	1.922

Table S1. Calculated lattice parameters of BiOCl, BiOCl:0.005Sm³⁺ and BiOCl:0.010Sm³⁺ microplates via Rietveld XRD refinement.

Compounds	$K(\min^{-1})$
BiOCl	0.00096
BiOC1:0.003Sm ³⁺	0.00109
BiOC1:0.005Sm ³⁺	0.00154
BiOC1:0.008Sm ³⁺	0.00135
BiOC1:0.010Sm ³⁺	0.00145
BiOC1:0.030Sm ³⁺	0.00130
BiOC1:0.050Sm ³⁺	0.00106

Table S2. *K* values of BiOCl:xSm³⁺ microplates under visible light irradiation.

Table S3. *K* values of BiOCl:Sm³⁺@yg-C₃N₄ heterojunction composites excited by visible light.

Compounds	<i>K</i> (min ⁻¹)
g-C ₃ N ₄	0.00336
BiOCl:Sm ³⁺	0.00154
BiOCl:Sm ³⁺ @5%g-C ₃ N ₄	0.00214
$BiOCl:Sm^{3+}@10\%g-C_3N_4$	0.00266
$BiOCl:Sm^{3+}@20\%g-C_3N_4$	0.00379
$BiOCl:Sm^{3+}@30\%g-C_3N_4$	0.00449
$BiOCl:Sm^{3+}@40\%g-C_3N_4$	0.00524
$BiOCl:Sm^{3+}@50\%g-C_3N_4$	0.00568
BiOCl:Sm ³⁺ @60%g-C ₃ N ₄	0.00664

Figure S1 FE-SEM images BiOCl:xSm³⁺ compounds with the Sm³⁺ contents of (a) x = 0.000, (b) x = 0.003, (c) x = 0.005, (d) x = 0.008, (e) x = 0.010, (f) x = 0.030 and (g) x = 0.050.

Figure S2 UV-Vis absorption spectra of BiOCl:xSm³⁺ microplates with different Sm³⁺ contents of (a) x = 0.00, (b) x = 0.003, (c) x = 0.005, (d) x = 0.008, (e) x = 0.010, (f) x = 0.030 and (g) x = 0.050.

Figure S3 Evaluation of E_g values of BiOCl:xSm³⁺ microplates with different Sm³⁺ concentrations of (a) x = 0.00, (b) x = 0.003, (c) x = 0.005, (d) x = 0.008, (e) x = 0.010, (f) x = 0.030 and (g) x = 0.050 by Kubelka-Munk function.

Figure S4 Energy level diagram of Sm³⁺ in BiOCl host lattices.

Figure S5 The UV-vis absorption spectra of TC degradation with BiOCl:xSm³⁺ microplates doped with different Sm³⁺ contents of (a) x = 0.003, (b) x = 0.008, (c) x = 0.010, (d) x = 0.030 and (e) x = 0.050.

Figure S6 (a) XRD pattern of the g-C₃N₄. (b) XRD patterns and (c) Emission spectra of BiOCl:Sm³⁺@yg-C₃N₄ heterojunction composites excited at 365 nm.

Figure S7 FE-SEM images of the BiOCl:Sm³⁺@yg-C₃N₄ heterojunction composites with different weight percentages of (a) y = 10%, (b) y = 20%, (c) y = 30%, (d) y = 40% and (e) y = 50%.

Figure S8 XPS survey spectrum of BiOCl:Sm³⁺@60%g-C₃N₄ heterojunction composites.

Figure S9 EPR spectrum of BiOCl:0.010Sm³⁺ microplates at room temperature.

Figure S10 The UV-vis absorption spectra of TC degradation in the presence of BiOCl:Sm³⁺@yg-C₃N₄ heterojunction composites with diverse g-C₃N₄ contents of (a) y = 5%, (b) y = 10%, (c) y = 20%, (d) y = 30% (e) y = 40%, and (f) y = 50%.

Figure S11 UV-vis absorption spectra of TC degradation via using (a) commercial SnO_2 (b) commercial TiO_2 and (c) $BiOCl:Sm^{3+}@60\%g-C_3N_4$ heterojunction composites. (d) Degradation rates of TC by commercial SnO_2 , TiO_2 and $BiOCl:Sm^{3+}@60\%g-C_3N_4$ heterojunction composites under full-spectrum light irradiation. (e) Plots of the $ln(C_0/C)$ versus time t for the related photocatalysts. (f) Kinetic rates of TC degradation via using the related photocatalysts under full-spectrum light irradiation.

Figure S12 (a) XRD pattern and (b) FE-SEM image of BiOCl:Sm³⁺@60%g-C₃N₄ heterojunction composites after cyclic experiment.

Figure S13 (a) UV-vis absorption spectrum of g-C₃N₄. (b) Evaluation of E_g values of g-C₃N₄ by Kubelka-Munk function.

Figure S14 Band positions of (a) BiOCl and (b) $g-C_3N_4$.

Figure S15 Trapping experiments of the active species for TC degradation by utilizing of (a) $BiOCl:0.005Sm^{3+}$ microplates and (b) g-C₃N₄.