SUPPORTING INFORMATION Formation of H₃O⁺ and OH by CO₂ and N₂O trace gases in the atmospheric environment

Daniele Catone,^a Mattea Carmen Castrovilli,^b Francesca Nicolanti,^c Mauro Satta,^{*d,e**}Antonella Cartoni^{*e**}

a) Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Tor Vergata, Via del Fosso del Cavaliere, Rome, Italy

b) Institute of Structure of Matter-CNR (ISM-CNR), Area della Ricerca di Roma 1, Via Salaria km 29.300, 00015, Monterotondo, Italy

c) Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, Rome, 00185, Italy

d) Institute for the Study of Nanostructured Materials-CNR (ISMN-CNR) co Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, Rome, 00185, Italy

e) Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, Rome, 00185,

Italy

Corresponding Authors

*A. Cartoni. E-mail: <u>antonella.cartoni@uniroma1.it;</u> Tel. + 39 06 49913678 *M. Satta. E-mail: <u>mauro.satta@cnr.it, Tel.</u> + 39 06 49913381

1. Average Internal Energy Distribution upon Photoionization

The procedure to get the internal energy of N_2O upon photoionization, can be found in paragraph 2.1 of SI of [1]. We use measured Mass-Analyzed Threshold Ionization Spectroscopy (MATI) cross-sections [2] to obtain the average internal (E_{INTER}) and kinetic (E^{el}_{Kin}) energy distribution upon photoionization of N_2O shown in Figure S1 :

Figure S1: Average internal energy of the N_2O^+ ion (black line) and average kinetic energy of the photoelectron (red line) as a function of the photoionization energy hv.

2. Rate Coefficients from mass spectra

The experimental measurement of mass intensities recorded as a function of photoionization energy of X (X=CO₂, N₂O) ion which reacts with the neutral H_2O allows the determination of the rate coefficients of the reaction steps leading to the final products.

The network of exothermic reactions involving the X ion and H_2O neutral molecules is the following:

$$X^{+} + H_2 O \xrightarrow{k_{HT}} H X^{+} + O H$$

$$(1)$$

$$X^{+} + H_2 O \xrightarrow{k_{cr}} H_2 O^{+} + X$$
⁽²⁾

$$H X^{+} + H_2 O \xrightarrow{k_{pr}} H_3 O^{+} + X$$
⁽³⁾

$$H_2O^+ + H_2O \xrightarrow{\kappa_{WW}} H_3O^+ + OH \tag{4}$$

The values of the different rate coefficients (k) at room temperature has been taken from [3], and are reported in table S1

	N_2O	CO ₂
k _{HT}	$2.10{\cdot}10^{-10}{\pm}0.31{\cdot}10^{-10}$	$6.00{\cdot}10^{-10}{\pm}0.90{\cdot}10^{-10}$
k _{CT}	$1.89 \cdot 10^{-9} \pm 0.28 \cdot 10^{-9}$	$1.80 \cdot 10^{-9} \pm 0.27 \cdot 10^{-9}$
k _{PT}	$2.83 \cdot 10^{-9} \pm 0.70 \cdot 10^{-9}$	$2.65 \cdot 10^{-9} \pm 0.53 \cdot 10^{-9}$
k _{ww}	$2.05 \cdot 10^{-9} \pm 0.20 \cdot 10^{-9}$	$2.05 \cdot 10^{-9} \pm 0.20 \cdot 10^{-9}$

Table S1: Rate coefficients (cm³s⁻¹molecule⁻¹) for the reaction networks at T=300K

In order to obtain the rate coefficients at photoionization energies grater than the IE, a kinetic model is developed based on the equations related to the network of reactions 1-4:

$$\frac{da_{X^{+}}}{dt} = -k_{HT}a_{X^{+}}a_{H_{2}O} - k_{CT}a_{X^{+}}a_{H_{2}O}$$
(5)

$$\frac{da_{HX^{+}}}{dt} = k_{HT} a_{X^{+}} \cdot a_{H_{2}O} - k_{PT} a_{HX^{+}} \cdot a_{H_{2}O}$$
(6)

$$\frac{da_{H_2O^{+}}}{dt} = k_{CT} a_{X^{+}} \cdot a_{H_2O} - k_{WW} a_{H_2O^{+}} \cdot a_{H_2O}$$
(7)

$$\frac{da_{H_3O^*}}{dt} = k_{PT} a_{HX^*} \cdot a_{H_2O} + k_{WW} a_{H_2O^*} \cdot a_{H_2O}$$
(8)

, where the activities (*a*) of the different molecular species are the number densities present in the experimental apparatus derived from measured pressures.

The analytical solution of the above system of differential equations is solved under the hypothesis that the activity of the neutral water is constant during the reactions, being the number

density of X⁺ ion negligible with respect to the neutral species. The activities of the ionic species are proportional to the mass intensities recorded at times t_F. The pseudo rate coefficient γ is defined as: $\gamma = k_{HT} + k_{CT}$.

$$a_{X^*}(t_F) = a_0 e^{-\gamma a_{H_0} t_F}$$
(9)

$$a_{HX^{*}}(t_{F}) = \frac{a_{0}(\gamma - k_{CT})}{\gamma - k_{PT}} \left(e^{-k_{PT}a_{H,0}t_{F}} - e^{-\gamma a_{H,0}t_{F}} \right)$$
(10)

$$a_{H_2O^*}(t_F) = \frac{k_{CT}a_0}{\gamma - k_{WW}} \left(e^{-k_{WW}a_{H_2O}t_F} - e^{-\gamma a_{H_2O}t_F} \right)$$
(11)

$$a_{H_{3}O'}(t_{F}) = a_{0} \left(\frac{-(\gamma - k_{CT})}{\gamma - k_{PT}} e^{-k_{PT}a_{H_{3}O}t_{F}} + \frac{(\gamma - k_{CT})}{(\gamma - k_{PT})} e^{-\gamma a_{H_{3}O}t_{F}} - \frac{k_{CT}}{\gamma - k_{WW}} e^{-k_{WW}a_{H_{3}O}t_{F}} + \frac{k_{CT}}{(\gamma - k_{WW})} e^{-\gamma a_{H_{3}O}t_{F}} - e^{-\gamma a_{H_{3}O}t_{F}} + 1 \right)$$
(12)

The a_0 coefficient is the sum of the number density of all the ions at time t_F : $a_0 = a_{X^+}(t_F) + a_{HX^+}(t_F) + a_{H_2O^+}(t_F) + a_{H_3O^+}(t_F)$, and it is a time constant because of the charge conservation during the reactions, and it is equal to the initial number density of the X⁺ ion.

The evaluation of the rate coefficients for the reactions of X⁺ with water at each photon energies is based on the hypothesis that the reaction 3) and 4) are not affected by the internal energy of the initial photoexcited ion X⁺, and that both H₂O and H₂O⁺ are at room temperature in the present experimental conditions. The rate coefficient k_{PT} and k_{ww} are considered constant with hv. This assumption is based on the fact that the fast charge exchange between X⁺ and water will produce a H₂O⁺ ion with an internal energy which is not much affected by the thermal content of the X⁺. Instead, for reaction 3), this is considered to be in the collision regime: the Su-Chu Langevin rates [4] (see fig. S2) are $K_L^{N_2O/CO_2}(300 K)=2.490 \cdot 10^{-9}$ cm³s⁻¹molecule⁻¹ which are within the error of the rate coefficient at room temperature (See tab S1).

Figure S2: Collision rate coefficient for reaction 3) in the Su-Chu Langevin approximation

We have fixed the value of k_{PT} at its value at room temperature, and we have verified that lower values of k_{PT} , which occurs when the temperature increases, affect the rate coefficients of equations 1) and 2) within $0.2 \cdot 10^{-9}$ cm³s⁻¹molecule⁻¹, which is close to their errors.

This assumption will allow, by using of eqs. 9 and 10, the evaluation of $k_{HT}(h\nu)$, $k_{CT}(h\nu)$ at each photon energies $h\nu$ by using the experimental mass of X^+ and HX^+ .

The t_F is evaluated by the solving the ratio of equation 9 and 10 and the experimental mass ratio $m_X^+(t_F)/m_{HX^+}(t_F)$, where γ is a known quantity at T=300K (see tab. 1), and a_{H_2O} is given by the partial pressure of H₂O and is reported in tab S2.

	P_{H_2O} (mbar)	a_{H_2O} (molecule/cm ³)	t_F (s)	$a_o(hv=IE)$
CO ₂	$4.3 \cdot 10^{-5} \pm 1.3 \cdot 10^{-5}$	$1.0 \cdot 10^{12} \pm 0.3 \cdot 10^{12}$	$1.25 \cdot 10^{-4} \pm 0.68 \cdot 10^{-4}$	23332.52963
N ₂ O	$8.2 \cdot 10^{-5} \pm 2.5 \cdot 10^{-5}$	$2.0{\cdot}10^{12}{\pm}0.6{\cdot}10^{12}$	$7.78 \cdot 10^{-4} \pm 7.64 \cdot 10^{-4}$	1535.75705

Table S2: Final times of reaction for reaction of N_2O^+ and CO_2^+ with water. The error on the pressure is estimated as 30%.

The final times t_F allow to compute the total ions a_o : from eq. 9 we have calculated the total ions yields at hv=IE, as reported in tab. S2. The values of total ion yields at different photon energies are calculated by scaling with the CO₂ (fig. S3) and N₂O (fig. S4) PES cross sections $(\phi(hv)) a_o(hv) = a_o(IE) \cdot \phi(hv) / \phi(IE)$

Figure S3: Photon-electron spectrum of CO₂ shown from ionization energies up to 15 eV.

Figure S4: Photon-electron spectrum of N₂O shown from ionization energies up to 13.7 eV.

Figure S5: PIEC of NO^+ from N_2O^+

	N_2OH^+	Vibrational Mode
ν_1	437	NNO in plane bending
ν_2	488	NNO out of plane bending
ν_3	1063	NO stretching
ν_4	1377	HON in plane bending
ν_5	2325	NN stretching
ν_6	3472	OH stretching
	N_2O	
ν_1	599	Bending
ν_2	599	Bending
ν_3	1297	Symm. stretching
ν_4	2260	Asymm. stretching
	$\mathbf{H}_{2}\mathbf{O}^{+}$	
ν_1	1457	Bending
ν_2	3358	Symm. stretching
ν_3	3411	Asymm. stretching
	ОН	
ν_1	3737	OH stretching
	$\mathbf{CO}_{2}\mathbf{H}^{+}$	
ν_1	540	OCO in plane bending
ν_2	590	OCO out of plane bending
ν_3	1036	HOC in plane bending
ν_4	1252	Symm. OCO stretching
ν_5	2427	Asymm. OCO stretching
ν_6	3524	OH stretching
	CO ₂	
ν_1	666	Bending
ν_2	666	Bending
ν_3	1341	Symm. stretching
ν_4	2384	Asymm. stretching

Table S3: Frequencies (cm⁻¹) of the products of HT and CT reactions:

	HCO ₂ ⁺			ОН
hv (eV)	Vibrational Energy (cm ⁻¹)	Mode excitation	Kinetic Energy (cm ⁻¹)	Kinetic Energy (cm ⁻¹)
13.8	2850	$2v_1+3v_2$	850	2250
13.9	2382	$v_1+v_2+v_4$	1024	2712
14.0	2756	ν_1 +2 ν_2 + ν_3	1016	2690
14.1	2662	v_2 +2 v_3	1075	2846
14.2	2967	v_1 + v_5	1020	2701
14.3	3412	$4v_1+v_4$	907	2400
14.4	3152	$2v_1+2v_3$	992	2626
14.5	3108	$3v_3$	1015	2686
14.6	3108	$3v_3$	1031	2729
14.7	3412	$4v_1+v_4$	955	2527
14.8	2872	$3v_1+v_4$	1117	2955
14.9	3240	$6v_1$	1030	2726
15.0	3390	$3v_1+3v_2$	1009	2670

Table S4. Energy distribution of the products for HT channel: $CO_2^+ + H_2O \rightarrow HCO_2^+ + OH$

	CO ₂			H_2O^+		
hv (eV)	Vibrational Energy (cm ⁻¹)	Mode excitation	Kinetic Energy (cm ⁻¹)	Vibrational Energy (cm ⁻¹)	Mode excitation	Kinetic Energy (cm ⁻¹)
13.8	8010	$8v_1+2v_3$	646	0		1578
13.9	8658	$13v_1$	506	0		1238
14.0	8405	$3\nu_1 + 3\nu_3 + \nu_4$	257	1457	ν_1	627
14.1	4391	v_1 + v_3 + v_4	467	4868	v_1+v_3	1141
14.2	8387	$7v_1+v_3+v_4$	327	1457	ν_1	801
14.3	8387	$7v_1+v_3+v_4$	336	1457	ν_1	823
14.4	7450	$2v_3+2v_4$	623	1457	ν_1	1524
14.5	10132	$4v_3+2v_4$	279	0		682
14.6	9737	$5v_1+3v_3+v_4$	411	0		1004
14.7	9430	$7v_1+2v_4$	507	0		1241
14.8	7073	v_1 +3 v_3 + v_4	360	2914	$2v_1$	881
14.9	4671	$5v_1+v_3$	505	4868	v_1+v_3	1236
15.0	6389	$4v_1+v_3+v_4$	451	3411	ν_3	1102

Table S5. Energy distribution of the products for CT channel: $CO_2^+ + H_2O \rightarrow CO_2 + H_2O^+$

	N_2OH^+				
hv (eV)	Vibrational Energy (cm ⁻¹)	Mode excitation	Kinetic Energy (cm ⁻¹)	Kinetic Energy (cm ⁻¹)	
12.90	437	ν_1	468	1238	
12.95	0		619	1638	
13.00	0		627	1658	
13.05	437	ν_1	532	1407	
13.10	437	ν_1	545	1441	
13.15	0		668	1770	
13.20	437	ν_1	554	1468	
13.25	437	ν_1	558	1477	
13.30	437	ν_1	560	1483	
13.35	437	ν_1	564	1494	
13.40	0		686	1815	
13.45	0		686	1815	
13.50	437	ν_1	566	1498	
13.55	437	ν_1	566	1498	
13.60	0		686	1815	
13.65	437	ν_1	566	1498	
13.70	437	ν_1	566	1498	

Table S6. Energy distribution of the products for HT channel: $N_2O^+ + H_2O \rightarrow N_2OH^++OH$

	N ₂ O			H_2O^+
hv (eV)	Vibrational Energy (cm ⁻¹)	Mode excitation	Kinetic Energy (cm ⁻¹)	Kinetic Energy (cm ⁻¹)
12.90	1896	$\nu_1 + \nu_3$	445	1087
12.95	2495	$2v_1+v_3$	304	744
13.00	2495	$2v_1+v_3$	312	764
13.05	2260	ν_4	407	995
13.10	1896	ν_1 + ν_3	526	1287
13.15	2260	ν_4	425	1039
13.20	1797	$3v_1$	566	1382
13.25	2260	ν_4	435	1063
13.30	2260	ν_4	437	1069
13.35	2396	$4v_1$	402	983
13.40	2260	ν_4	443	1084
13.45	2260	ν_4	443	1084
13.50	1896	ν_1 + ν_3	549	1342
13.55	1896	ν_1 + ν_3	549	1342
13.60	1797	$3v_1$	578	1412
13.65	1797	$3v_1$	578	1412
13.70	1896	$v_1 + v_3$	549	1342

Table S7. Energy distribution of the products for CT channel: $N_2O^+ + H_2O \rightarrow N_2O+H_2O^+$

3. Radiative Power

The vibrational radiative power emission has been evaluated by using the HITEMP database [5]. In particular the most abundant isotope composition has been selected for both CO₂ and N₂O molecules. The cutoff of the intensity of the lines has been put at 10^{-32} cm⁻¹/(molecule cm⁻²) after proper verification of convergence. The radiative power for each vibrational excited state defined by the triplet v₁, v₂, v₃ has been evaluated with the following equation:

$$RP(v_1, v_2, v_3) = \frac{\sum_i A_i S_i v_i e^{-E_i^{ovt}/KT^{vot}}}{\sum_i A_i S_i g_i e^{-E_i^{ovt}/KT^{vot}}}$$
(13)

where for each energy transition *i* whose upper vibrational state belongs to the v_1 , v_2 , v_3 triplet, A_i is the Einstein spontaneous emission coefficient in s⁻¹, S_i is the intensity in cm⁻¹/(molecule cm⁻²), v_i is the emission frequency in cm⁻¹, g_i is the statistical weight of the upper state, T^{rot} is the rotational temperature, E_i^{rot} is the upper state rotational energy, and is given by the difference between the upper state energy and the vibrational energy of the upper state. On the other hand, the thermal vibrational radiative power is defined as:

$$TRP(T) = \frac{\sum_{i} A_{i} S_{i} v_{i} e^{-E_{i}/KT}}{\sum_{i} A_{i} S_{i} g_{i} e^{-E_{i}/KT}}$$
(14)

where E_i is the ro-vibrational energy of the *i* transition, and the sum is over all the transitions. The state selected radiative lifetimes are calculated with the following equation:

$$\tau(\nu_{1},\nu_{2},\nu_{3}) = \frac{\sum_{i} A_{i} S_{i} e^{-E_{i}^{rot}/KT^{rot}}}{\sum_{i} A_{i} S_{i} g_{i} e^{-E_{i}^{rot}/KT^{rot}}}$$
(15)

The thermal radiative lifetimes are given by following equation:

$$\tau_{TH}(T) = \frac{\sum_{i} A_{i} S_{i} e^{-E_{i}/KT}}{\sum_{i} A_{i} S_{i} g_{i} e^{-E_{i}/KT}}$$
(16)

hv (eV)	Vibrational Energy (cm ⁻¹)	Vibrational Temperature (K)	Radiative Power (W/molecule)	Radiative Lifetime (s)
13.8	8010	3694	3.62·10 ⁻¹⁹	1402.73
13.9	8658	3933	0.00	//
14.0	8405	3840	1.05.10-17	42.19
14.1	4391	2339	3.52·10 ⁻¹⁶	1.02
14.2	8387	3833	2.68·10 ⁻¹⁶	1.27
14.3	8387	3833	2.68·10 ⁻¹⁶	1.27
14.4	7450	3487	1.08·10 ⁻¹⁶	3.75
14.5	10132	4474	2.87·10 ⁻¹⁸	206.47
14.6	9737	4329	6.23·10 ⁻¹⁸	86.30
14.7	9430	4217	$1.09 \cdot 10^{-16}$	2.88
14.8	7073	3347	1.11.10-17	41.14
14.9	4671	2446	8.76·10 ⁻¹⁸	10.59
15.0	6389	3093	3.03.10-16	1.15

Table S8: Vibrational energies and temperature at different photon energies for CO₂.

Data from HITEMP database: Thermal distribution at T=250K radiative power (TRP) $5.67 \cdot 10^{-18}$ W/molecule, lifetime (τ_{TH})= 21.19 s. The rotational temperature is fixed at 250K

hv (eV)	Vibrational Energy (cm ⁻¹)	Vibrational Temperature (K)	Radiative Power (W/molecule)	Radiative Lifetime (s)
12.90	1896	1307	4.46·10 ⁻¹⁸	40.19
12.95	2495	1555	1.83·10 ⁻¹⁸	122.03
13.00	2495	1555	$1.83 \cdot 10^{-18}$	122.03
13.05	2260	1459	1.33·10 ⁻¹⁶	2.31
13.10	1896	1307	4.46·10 ⁻¹⁸	40.19
13.15	2260	1459	1.33·10 ⁻¹⁶	2.31
13.20	1797	1264	$1.37 \cdot 10^{-19}$	1079.8
13.25	2260	1459	1.33·10 ⁻¹⁶	2.31
13.30	2260	1459	1.33·10 ⁻¹⁶	2.31
13.35	2396	1515	9.57·10 ⁻²⁰	2276.67
13.40	2260	1459	1.33·10 ⁻¹⁶	2.31
13.45	2260	1459	1.33·10 ⁻¹⁶	2.31
13.50	1896	1307	4.46·10 ⁻¹⁸	40.19
13.55	1896	1307	4.46·10 ⁻¹⁸	40.19
13.60	1797	1264	1.37·10 ⁻¹⁹	1079.8
13.65	1797	1264	1.37·10 ⁻¹⁹	1079.8
13.70	1896	1307	4.46·10 ⁻¹⁸	40.19

Table S9: Vibrational energies and temperature at different photon energies for N₂O

Data from HITEMP [ref] database: at T=250K radiative power (TRP) 9.64·10⁻¹⁹ W/molecule, lifetime (τ_{TH}) 216.51 s. The rotational temperature is fixed at 250K

References:

[1] Mauro Satta, Antonella Cartoni, Daniele Catone, Mattea Carmen Castrovilli, Paola Bolognesi, Nicola Zema and Lorenzo Avaldi. "The Reaction of Sulfur Dioxide Radical Cation with Hydrogen and its Relevance in Solar Geoengineering Models", ChemPhysChem **21** 1146-1156 (2020).

[2] Oleg Kostko, Sang Kyu Kim, Stephen R. Leone, and Musahid Ahmed. "Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules Using VUV Synchrotron Radiation", J. Phys. Chem. A, **113**, 14206–14211 (2009).

[3] V. G. Anicich, J. Phys. Chem. Ref. Data, 22, 1469–1569 (1993).

[4] T. Su, W. J. Chesnavich, J. Chem. Phys., 76, 5183–5185 (1982).

[5] L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. Perevalov, S. A. Tashkun, J. Tennyson, "HITEMP, the high-temperature molecular spectroscopic database", *J. Quant. Spectrosc. Radiat. Transfer* **111**, 2139-2150 (2010)