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Table S1. Experimental results considered for the computational work:1,2 reactions of QO with  

benzaldehyde in dichloroethane. 

 

Catalyst Oxidant Additive T / ºC 
yield (%) 

P1 P2 

PdCl2 

TBHPa - 100 52 45 

K2S2O8 - 100 nd 48 

AgOAc - 100 nd nd 

BQ - 100 nd nd 

DTBP - 100 nd 48 

TBHPb - 100 nd 80 

TBHPb H2O 100 76 nd 

TBHPb H2O 80 70 nd 

TBHPb H2O 120 80 nd 

TBHPb H2O 140 90 nd 

Pd(OAc)2 TBHPa - 100 traces 30 

 a 70 aq.%     b 5-6M in decane 

 

1 (a) X. Chen, X. Cui and Y. Wu, Org. Lett. 2016, 18, 2411–2414. (b) Chen, X.; Cui, X.; Wu, Y. 

Org. Lett. 2016, 18, 3722-3725. 

2 J. Wu, X. Cui, L. Chen L., G. Jiang, Y. Wu, J. Am. Chem. Soc. 2009, 131, 13888-13889.   
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Figure S1. Energy profile for the initiating steps of the functionalization of QO at C8 (relative 

Gibbs energies in kcal mol-1 in dichloroethane). 

 

 

 

Scheme S1. Spin density of the benzaldehyde radical (•COPh, left) and the radical intermediate 

D (right). 
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Figure S2. Single crystal X-ray diffraction structure (REFCODE INOZOC1) of the complex 

resulting from the reaction of the unsaturated intermediate C’, [PdCl(QO)], with PPh3 (distances 

in Å).2 

 

1   C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, The Cambridge Structural Database, 

Acta Cryst. 2016, B72, 171-179. 

2    X. Chen, X. Cui and Y. Wu, Org. Lett. 2016, 18, 2411–2414. 

 

 



6 
 

 

 

 

Figure S3. Energy profile for the second part of the functionalization of QO at C8 in the absence 

of water (relative Gibbs energies in kcal mol-1 in dichloroethane).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

 
 

 

Figure S4. Energy profile for the second part of the alternative functionalization at C8 and 

functionalization at C2 of QO in the presence of water (relative Gibbs energies in kcal mol-1 in 

dichloroethane; distances in Å).  
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Scheme S2. Hydrogen migration from the C2 position to the oxygen atom of QO (left) and the 

same migration assisted by a water molecule (right, relative Gibbs energy in dichloroethane, kcal 

mol-1). 
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Figure S5. Energy profile for isomerization between P1 and P2 (relative Gibbs energies in kcal 

mol-1 in dichloroethane; distances in Å).   
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Figure S6. Energy profile for the functionalization of QO at C2 (relative Gibbs energies in kcal 

mol-1 in dichloroethane; distances in Å). 
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Table S2. Energy Decomposition Analysis (EDA, kcal mol-1) addressing the interaction between 

QO with PdCl2 in intermediates A ( bonding) and L ( bonding).  

 

 

 

 

 

 

 

 

 

 

In the Energy Decomposition Analysis (EDA), the interaction energy is divided in different 

energy terms. The interaction energy (ΔEint), defined as the difference between the energy of the 

molecule and the sum of the energy of the two fragments (with the same geometry), is split into 

three terms. ΔEPauli is the repulsive contribution from the interaction between occupied orbitals, 

Eelec corresponds to the classical electrostatic interaction between the charge distributions of the 

fragments, and Eoi represents the charge transfer between fragments (covalent interaction). 

When the solvent is considered in the calculations, another term must be added (Esolv).  

 

 Eint = EPauli + Eelec + Eoi (+ Esolv) 

 

The interaction energy can be related to the bonding energy (BE), defined for A (or other 

species) as the energy difference between the energy of the molecule and the sum of the energies 

of the fragments after they have relaxed to their minimum energy. The energy difference 

between the fragment with its geometry in the complex and after relaxation is called EprepF, the 

sum for the two fragments being Eprep.  

 

 BE = EA – (EQO + EPdCl2) = Eint + Eprep 

 

 

 

 

 A L 

EPauli 154.6 146.3 

Eelec -126.9 -91.2 

Eoi -74.22 -90.3 

Esolv -5.12 3.5 

Eint -51.6 -38.7 

EprepQO 12.4 7.3 

EprepPdCl2 2.5 3.0 

Eprep 14.9 10.3 

BE -36.7 -28.4 
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Table S3. Free energies in dichloroethane (kcal mol-1) for the C-H activation step of the reaction 

of QO with benzaldehyde catalyzed by PdCl2. The mean absolute error (MAE) relative to the 

CCSD(T) calculations is also given.  

 

Method 

/ 

Species 

CCSD(T)

/def2-

tzvpp 

M06-

2X(D3)/ 

def2-tzvpp 

M06-

2X(D3)/ 

6-311G** 

PBE0 

/6-311G** 

PBE0(D3)

/6-311G** 

PBE0(D3) 

/def2-tzvpp 

PdCl2 0.0 0.00.0 0.0 0.0 0.0 0.0 

A -12.51 -6.16 -9.80 -12.60 -16.85 -13.17 

TSAB 3.99 14.61 12.34 6.66 1.98 4.20 

B -18.57 -10.86 -13.19 -13.25 -17.52 -15.07 

MAE 0 8.2 5.48 2.6 2.5 1.5 

 

 


