Supporting Information for

Spin-splitting and switchable half-metallicity in van der Waals multiferroic CuBiP₂Se₆/GdClBr heterojunction

Kai Zhang¹, Xiaocha Wang^{1,*}, Wenbo Mi²

¹Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

²Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China

^{*}Author to whom all correspondence should be addressed.

E-mail: wangxc@email.tjut.edu.cn

Fig. S1. The crystal orbital Hamilton population (COHP) of intra-layer interaction for (a) GdClBr monolayer, (b) CuBiP₂Se₆ monolayer.

Fig. S2. The crystal orbital Hamilton population (COHP) of intra-layer interaction and interlayer interaction for GdClBr/CuBiP₂Se₆ of modle4.

Fig. S3. The band structure, total and partial density of states of the supercell GdClBr by $\sqrt{3} \sqrt{3} \sqrt{3}$ near Fermi energy level without/with SOC. The Fermi level is set at 0 eV.

Fig. S4. The planar average of electrostatic potential along the z axis of (a) GdClBr and (b) CuBiP₂Se₆.

Fig. S5. The band structures of GdClBr/CuBiP₂Se₆ of modle4 are divided by MK Γ K'M and MK Γ M, which electron effective mass at CBM and VBM, along different paths of high symmetric point are marked in the band structures, respectively. (The hole effective mass values are positive)

Fig. S6. The planar average of electrostatic potential along the z-axis of GdClBr at biaxial strain from -6% to 6%.

Fig. S7. The planar average of electrostatic potential along the z-axis of $CuBiP_2Se_6$ at biaxial strain from -6% to 6%.

Fig. S8. Schematic diagram of the work function difference of (a) GdClBr and (b) $CuBiP_2Se_6$ at biaxial strain from -6% to 6%.

Fig. S9. The band structure of the model4 of GdClBr/CuBiP₂Se₆ near Fermi energy level at biaxial strain from -6% to 6% with SOC. The Fermi level is set at 0 eV.

Fig. S10. Total and partial density of states of (a) model1 and (b) model4 of GdClBr/CuBiP₂Se₆ in an energy range from -8 eV to 8 eV.

Fig. S11. Bi-p orbit-resolved MAE of the model4 of GdClBr/CuBiP₂Se₆ at a biaxial strain from (a) to (f) -6% to 6%.

Fig. S12. The band structure of GdClBr near Fermi energy level without SOC by PBE+U and HSE06, respectively. The Fermi level is set at 0 eV.

Fig. S13. Energy difference (ΔE) and band gap of GdClBr monolayer under different $U_{\text{eff.}}$

Fig. S14. Total energy of GdClBr/CuBiP₂Se₆ of model1 and model4 are calculated by using k-mesh of $M \times M \times 1$.

Fig. S15. The band structures of GdClBr/CuBiP₂Se₆ of modle4 are obtained by different energy and force convergence criteria on each atom. The Fermi level is set at 0 eV.

Fig. S16. The magnetic moment (red) and heat capacity (blue) as functions of temperature for GdClBr monolayer.

Fig. S17. The coordination environment of the Gd atom in the top of GdClBr/CuBiP₂Se₆ for two AFM configurations. The $2 \times 1 \times 1$ supercell is marked by the solid lines. The red and blue arrows indicate spin-up and spin-down states, respectively.

Fig. S18. The magnetic moment (red) and heat capacity (blue) as functions of temperature for model4 of GdClBr/CuBiP₂Se₆ by using methods of J_1 and methods of J_1+J_2 , respectively.

Table. S1. Electron effective mass (m_n^*) and hole effective mass (m_p^*) along different paths of high symmetric point, average effective mass (m_d) of electron (hole) at CBM (VBM) for GdClBr/CuBiP₂Se₆ of modle4.

_		Г-К	Г-К'(М)	A ₁ -K	A_1 - Γ	А2-Г	A ₂ -K'(M)	$m_{\rm d}(\Gamma)$	$m_{d}(A_{1})$	$m_{\rm d}({\rm A_2})$
МКГ	$m_n^*(m_p^*)$	0.157	0.157	0.480	0.470	0.470	0.480	0.157	0.475	0.475
K'M	$/m_0$									
МК	$m_n^*(m_p^*)$	0.157	0.156	0.480	0.470	0.462	0.491	0.156	0.475	0.476
ГМ	/m ₀									

Table. S2. Energy difference (ΔE) of $2 \times 1 \times 1$ supercell ferromagnetic configuration and $2 \times 1 \times 1$ supercell antiferromagnetic configuration, exchange parameter (*J*), magnetic anisotropy energy (*MAE*), magnetic anisotropy energy parameter (*A*), the easy magnetization axis (EA) of GdClBr/CuBiP₂Se₆ and GdClBr monolayer.

	$\Delta E ({\rm meV})$	$J({\rm meV})$	MAE (µeV)	A (µeV)	EA
model1	922.62	2.403	594.4	12.383	PMA
model4	920.91	2.398	108.2	2.254	PMA
GdClBr	331.61	2.591	52.3	3.269	PMA

	$\varphi_{\rm GdClBr}({ m eV})$	$\varphi_{\text{CuBiP2Se6}}(\text{eV})$	$\Delta \varphi (\mathrm{eV})$
= -6%	4.101	4.855	0.754
-4%	4.116	5.066	0.950
e = -2%	4.013	5.183	1.170
x = 0%	4.060	5.324	1.264
c = 2%	3.924	5.432	1.508
$\varepsilon = 4\%$	3.795	5.447	1.652
$\varepsilon = 6\%$	3.738	5.548	1.810

Table. S3. The work function of GdClBr (φ_{GdClBr}) and CuBiP₂Se₆ ($\varphi_{CuBiP2Se_6}$) at the side near the interface, work function difference of GdClBr/CuBiP₂Se₆ at the interface at a biaxial strain from -6% to 6%.

Table. S4. Energy difference (ΔE) of $2 \times 1 \times 1$ supercell ferromagnetic configuration and $2 \times 1 \times 1$ supercell antiferromagnetic configuration, exchange parameter (*J*), magnetic anisotropy energy (*MAE*), magnetic anisotropy energy parameter (*A*), the easy magnetization axis (EA) of GdClBr/CuBiP₂Se₆ at a biaxial strain from -6% to 6%.

	$\Delta E ({\rm meV})$	J(meV)	MAE (µeV)	$A (\mu eV)$	EA
$\varepsilon = 0\%$	920.91	2.398	108.2	2.254	PMA
$\varepsilon = 2\%$	904.48	2.355	-228.6	-4.763	IMA
$\varepsilon = 4\%$	888.21	2.313	-792.6	-16.513	IMA
$\varepsilon = 6\%$	881.83	2.296	-856.9	-17.852	IMA
$\varepsilon = -2\%$	941.02	2.451	475.1	9.898	PMA
$\varepsilon = -4\%$	960.68	2.502	818.8	17.058	PMA
e = -6%	975.8	2.541	1105.6	23.033	PMA

Table. S5. Total energy (*E*), band gap (E_g), magnetic anisotropy energy (*MAE*), energy difference (ΔE) of 2×1×1 supercell ferromagnetic configuration and 2×1×1 supercell antiferromagnetic configuration of GdClBr/CuBiP₂Se₆ of modle4 with different energy and force convergence criteria

on each atom.

	E(eV)	$E_{g}(eV)$	MAE (µeV)	$\Delta E(E_{AFM}-E_{FM})$ (meV)
10^-5 eV, 10^-2 eV/Å	-113.78692	0.0917	108.2	920.91
10^-7 eV, 10^-3 eV/Å	-113.78702	0.0911	110.4	920.29

Table. S6. Energy difference (ΔE) of ferromagnetic configuration and antiferromagnetic configuration of GdClBr/CuBiP₂Se₆ for 2×1×1 supercell.

	$\Delta E(E_{AFM}-E_{FM})$ (meV)	
AFM1	920.91	
AFM2	623.61	