## **Supplementary Information**

## Functionalized Two-Dimensional Iron Boride Compounds as a Novel Electrode Material in Li-Ion Batteries

Yu Liu,<sup>a</sup> Haiyan Wang,<sup>a\*</sup> Yiwen Fu,<sup>a</sup> Dan Li,<sup>b</sup> Mengjie Wei,<sup>a</sup> Qinghua Wu,<sup>a</sup> and Qianku Hu<sup>a\*</sup>

<sup>a</sup> School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China. <sup>b</sup> Public experimental teaching center, Panzhihua University, Panzhihua, 617000, China

Electronic mail: wanghy@hpu.edu.cn (Wang Hai Yan)

Electronic mail: 212106020037@home.hpu.edu.cn (Liu Yu)

Table S1 shows the calculated elastic constant Cij for 2D FeB

| System | <i>C</i> <sub>11</sub> (N/m) | <i>C</i> <sub>12</sub> (N/m) | <i>C</i> <sub>66</sub> (N/m) |
|--------|------------------------------|------------------------------|------------------------------|
| FeB    | 192.775                      | 24.778                       | 91.866                       |

Two-dimensional crystals differ from three-dimensional materials in that there is zero stress outside the two-dimensional plane. As a result, the elastic coefficient matrix of a two-dimensional crystal has reduced dimensionality, which can be expressed using the following formula:

$$c = \begin{bmatrix} c_{11} & c_{12} & c_{16} \\ c_{12} & c_{22} & c_{26} \\ c_{16} & c_{26} & c_{66} \end{bmatrix}$$

Based on the energy-strain relationship, the elastic constants of FeB are calculated as  $C_{11}$ =192.775 N/m,  $C_{12}$ =24.778 N/m, and  $C_{66}$ =91.866 N/m. The stability criteria of  $C_{11} > C_{12}$  and  $C_{66} > 0$  are satisfied, indicating that the two-dimensional FeB is mechanically stable.

Table S2The energy of four different adsorption configurations of functional groups (F, O and S) on FeB surface.

| Configurations | S1(eV)   | S2(eV)   | S3(eV)   | S4(eV)   |
|----------------|----------|----------|----------|----------|
| FeBF           | -344.445 | -334.312 | -344.939 | -344.785 |
| FeBO           | -368.909 | -356.046 | -377.796 | -374.044 |
| FeBS           | -353.326 | -344.456 | -353.045 | -359.072 |

**Table S3** The bond length and layer thickness parameters of the most stable configuration of functionalized FeBT(T = F, O and S).

| Configurations | $L_{(B-B)}$ (Å) | $L_{(Fe-B)}(Å)$ | Thickness(Å) |
|----------------|-----------------|-----------------|--------------|
| FeBF           | 1.682           | 2.174           | 2.748        |
| FeBO           | 1.657           | 2.231           | 2.951        |
| FeBS           | 1.702           | 2.092           | 2.361        |



Fig. 2 Top and front views of the most stable configurations for functionalized FeBT (T = F, O, and S) are shown.



**Fig. 3** DOS for functionalized FeBT (T = O, F, and S) are shown with the Fermi energy set to 0 eV, indicated by the vertical dashed line.



Fig. 4 The charge density differences of FeBT (T = O, F, and S) were calculated upon the adsorption of a single Li atom. Getting electrons and losing electrons were represented by the pale yellow and blue areas.

| energy.                            |            |            |            |            |
|------------------------------------|------------|------------|------------|------------|
| Whether to consider the zero-point | S1(eV)     | S2(eV)     | S3(eV)     | S4(eV)     |
| energy correction                  |            |            |            |            |
| No                                 | -266.69994 | -267.09992 | -266.83135 | -266.85917 |
| Yes                                | -266.67577 | -267.05499 | -266.78682 | -266.82693 |
| Zero-point energy                  | 0.024174   | 0.044934   | 0.044531   | 0.032242   |

 Table S4 The calculated energy for FeB at four adsorption sites of Li atoms after considering zero-point vibrational energy.



**Fig. 5** The Molecular dynamics simulations of (a) FeBF, (b) FeBO, and (c) FeBS were conducted at 300K and 600K.