Supporting Information

Dimensionality reduction induced synergetic optimization of the thermoelectric properties in Bi₂Si₂X₆ (X=Se, Te) monolayers

Tingting Zhang^a, Suiting Ning^a, Ziye Zhang^a, Ning Qi^a, and Zhiquan Chen*^a

^aHubei Nuclear Solid Physics Key Laboratory, Department of Physics,

Wuhan University, Wuhan 430072, China

* E-mail: chenzq@whu.edu.cn

		PBE	PBEsol	D2	D3	experimen
						t
Bi ₂ Si ₂ Te ₆	a (Å)	7.380	7.280	7.216	7.345	7.270
	c (Å)	23.594	21.243	21.591	21.738	21.343

Table S1: The optimized lattice constants of bulk Bi₂Si₂Te₆.

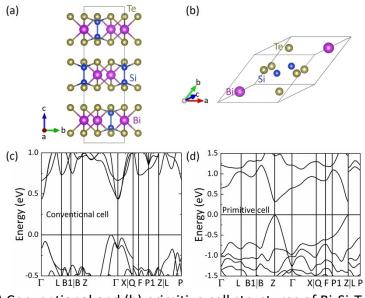


Figure S1. (a) Conventional and (b) primitive cell structures of Bi₂Si₂Te₆, and band structure of Bi₂Si₂Te₆ with (c) conventional cell structure and (d) primitive cell structure.

Table S2: The elastic constants of bulk and monolayer	Bi ₂ Si ₂ X ₆	(X=Se, Te)	(unit: GPa).
---	--	------------	--------------

					- I - Z -	2 0 ()	/ \
		C11	C12	C13	C33	C44	C66
		(C22)		(C23)		(C55)	
$Bi_2Si_2Se_6$	Bulk	69.75	26.28	8.18	16.73	5.21	21.73
	ML	19.00	7.09	0.28	0.50	0.88	6.03
Bi ₂ Si ₂ Te ₆	Bulk	55.05	17.19	10.01	19.06	9.81	18.93
	ML	15.33	4.50	-0.07	0.01	0.20	5.25

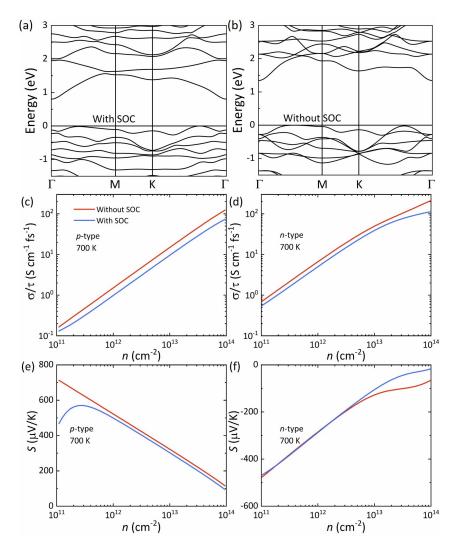


Figure S2: The calculated band structures of monolayer Bi₂Si₂Te₆ (a) with SOC and (b) without SOC, ratio of electrical conductivity to carrier relaxation time and Seebeck coefficient for (c and e) p-type and (d and f) n-type monolayer Bi₂Si₂Te₆ at 700 K.

The effect of SOC on electronic structure and electronic properties:

In Figure S2 (a) and (b), the calculated band gaps of monolayer Bi₂Si₂Te₆ with and without SOC are 0.80 and 1.34 eV, respectively. For the p-type monolayer Bi₂Si₂Te₆, ratio of electrical conductivity to carrier relaxation time σ/τ and Seebeck coefficient S without SOC effect are larger than that with SOC, which will overestimate its TE performance. For the n-type monolayer Bi₂Si₂Te₆ without SOC, σ/τ is also higher, while S is almost consistent at low concentration and has a difference at high concentration.

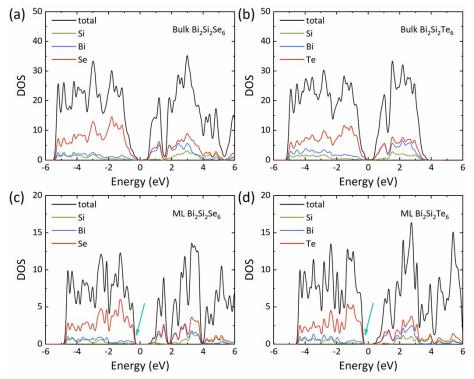


Figure S3: The density of states (DOS) of (a) bulk $Bi_2Si_2Se_6$, (b) bulk $Bi_2Si_2Te_6$, (c) monolayer $Bi_2Si_2Se_6$ and (d) monolayer $Bi_2Si_2Te_6$.

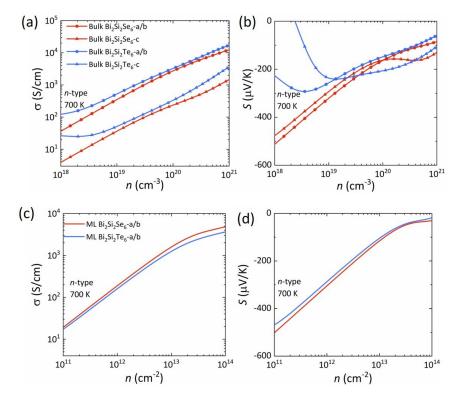


Figure S4: The (a and c) electrical conductivity and (b and d) Seebeck coefficient for the n-type bulk and monolayer $Bi_2Si_2X_6$ at 700 K.

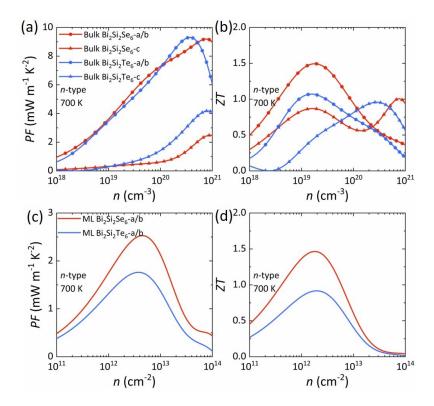


Figure S5: The (a and c) power factor and (b and d) dimensionless figure of merit for the n-type bulk and monolayer $Bi_2Si_2X_6$ at 700 K.

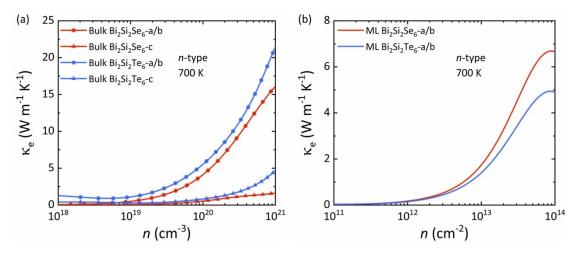


Figure S6: The electronic thermal conductivity of n-type (a) bulk and (b) monolayer $Bi_2Si_2X_6$ at 700 K.

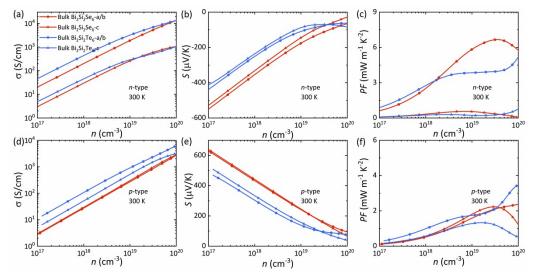


Figure S7: The (a and d) electrical conductivity, (b and e) Seebeck coefficient and (c and f) power factor for the n- and p-type bulk $Bi_2Si_2X_6$ at 300 K.

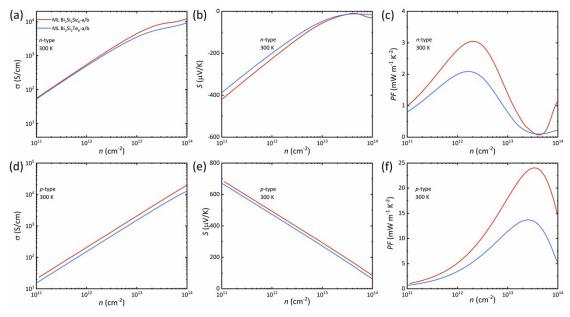


Figure S8: The (a and d) electrical conductivity, (b and e) Seebeck coefficient and (c and f) power factor for the n- and p-type monolayer $Bi_2Si_2X_6$ at 300 K.

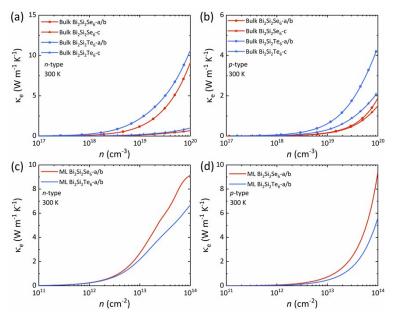


Figure S9: The electronic thermal conductivity of (a) n- and (b) p-type bulk, and (c) n- and (d) p-type monolayer $Bi_2Si_2X_6$ at 300 K.

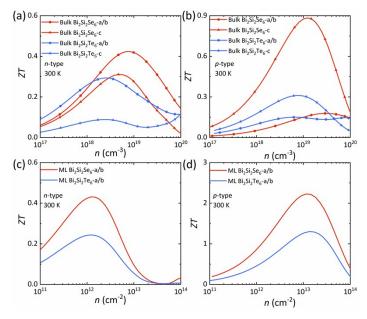


Figure S10: The dimensionless figure of merit of (a) n- and (b) p-type bulk, and (c) nand (d) p-type monolayer $Bi_2Si_2X_6$ at 300 K.

Table S3: The predicted Debye temperature (${}^{\theta}{}_{D}$:K), phonon group velocities (km s⁻¹) in each mode (v_1 for longitudinal acoustic phonon mode, v_t for transverse acoustic

phonon mode), and average phonon group velocity ဎ_m (km s⁻¹) of bulk and monolaver Bi₂Si₂Xϵ (X=Se, Te).

		θ_{D}	v_l	v_t	v_m		
Bi ₂ Si ₂ Se ₆	Bulk	151.2	2.48	1.37	1.53		
	ML	84.8	1.97	1.18	1.31		
$Bi_2Si_2Te_6$	Bulk	142.2	2.37	1.37	1.52		
	ML	61.0	1.50	0.89	0.99		