Electronic Supplementary Information

Efficient and stable N-heterocyclic ketone-Cu complex catalysts for acetylene hydrochlorination: Promotion effect of ligands revealed by DFT calculation

Yilin Zhang, Sen Li, Xianliang Qiao, Qingxin Guan*, and Wei Li*

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, No. 94 Weijin Road, Tianjin 300071, P. R. China.

Corresponding Authors:

Email: qingxinguan@nankai.edu.cn (Q. Guan)

Email: weili@nankai.edu.cn (W. Li)

Catalyst	Area $\operatorname{Cu}^{2+}(\%)$	Area Cu ⁺ (%)	Area Cu^{0} (%)
20%CuCl2-fresh	52.5	43.7	3.7
20%CuCl2-used	34.9	60.4	4.7
20%CuCl2-10%2P-fresh	90.5	8.7	0.8
20%CuCl2-10%2P-used	86.6	12.1	1.3
20%CuCl2-10%NM2P-fresh	93.2	6.4	0.4
20%CuCl2-10%NM2P-used	91.1	8.5	0.3

Table S1. Surface Cu Components of Catalysts (XPS Cu 2p)

Figure S1. Intrinsic reaction coordinate (IRC) for TS3 and TS5 of acetylene hydrochlorination over the CuCl/AC site, CuCl₂-NM2P/AC site, CuCl₂-2P/AC site, and CuCl₂/AC site.

Figure S2. Energy profiles of acetylene hydrochlorination of HCl and C_2H_2 with the CuCl₂-NM2P/AC catalyst along other possible pathways.

Figure S3. Acetylene conversion in acetylene hydrochlorination over different catalysts including CuCl₂-0.5 NM2P/AC, CuCl₂-0.5 2P/AC, CuCl₂-0.5 2P/AC, CuCl₂-0.5 3P/AC and CuCl₂/AC. Reaction conditions: T = 180 °C, GHSV(C₂H₂) = 160 h⁻¹, V(HCl)/V(C₂H₂) = 1.2.

Figure S4. Energy profile of acetylene hydrochlorination of HCl and C_2H_2 with the Nmethyl-2-pyridone or 2-piperidone catalyst.

Figure S5. Cu LMM Auger spectra of fresh catalysts and used catalysts (a) CuCl₂/AC,(b) CuCl₂-NM2P/AC and (c) CuCl₂-2P/AC.

Figure S6. TEM images of used catalysts: (a) 20%CuCl2/AC, (d) 20%CuCl2-NM2P/AC, and HAADF-STEM image of used catalysts: (b) 20%CuCl2/AC, (e) 20%CuCl2-NM2P/AC, and EDS elemental maps of used catalysts: (c) 20%CuCl2/AC, (f) 20%CuCl2-NM2P/AC.

Figure S7. Optimized geometries of A-1n Cu(I)/AC and D-1n Cu(II)/AC.

Figure S8. DFT calculations on the reaction mechanism. The system energy profile of the acetylene hydrochlorination of HCl and C_2H_2 with the catalysts CuCl/AC, CuCl₂-NM2P/AC, CuCl₂-2P/AC and CuCl₂/AC.

Figure S9. DFT calculations on the reaction mechanism using the M06 method. Energy profile of the acetylene hydrochlorination of HCl and C_2H_2 with the catalysts CuCl₂-NM2P/AC and CuCl₂-2P/AC and optimized geometries of intermediates and transition

states.

Figure S10. Adsorption configurations and energies of C_2H_2 and HCl on Cu^0 complexes.

Figure S11. TGA curves of fresh and used catalysts (a) \mbox{CuCl}_2/\mbox{AC} and (b) $\mbox{CuCl}_2-\mbox{CuCl}_2-\mbox{AC}$

NM2P/AC and (c) CuCl₂-2P/AC.