Article

Supplementary Information: Reductant-dependent DNA-templated silver nanoparticle formation kinetics

Zi-Yang Yang, Wen-Yan Jiang, and Shi-Yong Ran^*

Department of Physics, Wenzhou University, Wenzhou 325035, China

^{*}To whom correspondance should be addressed. E-mail: syran@wzu.edu.cn.

Figure S1 Procedures of the sample preparation for AFM characterization.

1 Force-dependent kinetics in the presence of different reductants

As shown in Fig.S6, in 0.01 mM AgNO₃ solution, exerting a force of 7.2 pN resulted in decrease–increase kinetics in the presence of 0.1 mM NaBH₄. In contrast, given the same conditions, forces larger than 11.5 pN could inhibit the decrease in kinetics and directly cause DNA restoration. With the [reductant]/[Ag⁺] ratio fixed at 10, an increased Ag⁺ concentration (1 mM) resulted in direct particle formation kinetics even at forces as high as 13.8 pN. This proved that NaBH₄ is very efficient in facilitating AgNP formation. In contrast to the strong effect of NaBH₄ in 1 mM AgNO₃ solution, in the presence of 10 mM L-ascorbic acid, the decrease kinetics exhibited at a force of 11.8 pN was inhibited by exerting a larger force of 14.2 pN, resulting in direct DNA recovery kinetics. Finally, a critical force value close to 2.9 pN was required to stop the nucleation dynamics in the presence of 10 mM sodium citrate and 1 mM Ag⁺. The results were consistent with the statements and the model in the manuscript. Namely, external forces created an additional energy barrier for the nucleation; addition of different re-

Figure S2 Chemical structures of NaBH₄, L-ascorbic acid, and sodium citrate.

Figure S3 Extension-time curves of λ -DNA in the presence of L-ascorbic acid. From top to bottom, $[Ag^+] = 0.01$, 0.1 and 1 mM, respectively. From left to right, [L-ascorbic acid]/ $[Ag^+] = 1$, 10, and 100, respectively.

Figure S4 Extension-time curves of λ -DNA in the presence of sodium citrate. From top to bottom, $[Ag^+] = 0.01$, 0.1 and 1 mM, respectively. From left to right, [sodium citrate]/ $[Ag^+] = 1$, 10, and 100, respectively.

Figure S5 Extension–time curve of λ -DNA under small force (F = 2.0 pN). [Ag⁺] = 1 mM, [NaBH₄] = 1 mM.

Figure S6 Extension–time curves of λ -DNA under different forces. (a) 0.01 mM Ag⁺ + 0.1 mM NaBH₄; (b) 1 mM Ag⁺ + 10 mM NaBH₄; (c) 1 mM Ag⁺ + 10 mM L-ascorbic acid; (d) 1 mM Ag⁺ + 10 mM sodium citrate.

ductants resulted in different degree of supersaturation, leading to different capabilities to induce nucleation kinetics.

Figure S7 Plots of $\ln(L - L_e)$ as a function of time and the fitting curves using Eq.(10) under varying reductant concentrations.

Figure S8 Plots of $\ln(L - L_e)$ as a function of time and the fitting curves using Eq.(10) under varying Ag⁺ concentrations.

Figure S9 Plots of $\ln(L - L_e)$ as a function of time and the fitting curves using Eq.(10) under different forces.