A brand-new type of excited-state proton transfer (ESIPT) molecule

based on sulfoxide/sulfenic acid tautomerism

Rongchuan Su^{*} and Zhenmei Huang

Rongchuan Su

Department of Pharmacology, North Sichuan Medical College, Nanchong, 637100, China

E-mail: srcxkai@nsmc.edu.cn

Zhenmei Huang

College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China

Fig. S1. The stable conformers for the ground state (bottom) and first excited singlet state (top) of IPO-Me were obtained by using the M06-2X/6-311++G(d,p) method in acetonitrile.

Fig. S2. The calculated infrared spectrum of IPO-H in the ground and first excited singlet states using the M06-2X/6-311++G(d,p) method in dichloromethane.

Fig. S3. The calculated infrared spectrum of IPO-H in the ground and first excited singlet states using the M06-2X/def2-TZVP method in acetonitrile.

Fig. S4. The calculated infrared spectrum of IPO-H in the ground and first excited states using the B3LYP/6-311++G(d,p) method in acetonitrile.

Fig. S5. The calculated infrared spectrum of IPO-H in the ground and first excited singlet states using the CAM-B3LYP/6-311++G(d,p) method in acetonitrile.

Fig. S6. The calculated infrared spectrum of IPO-H in the ground and first excited singlet states using the ω B97X-D/6-311++G(d,p) method in acetonitrile.

Fig. S7. The calculated infrared spectrum of IPO-Me in the ground and first excited singlet states using the M06-2X/6-311++G(d,p) method in acetonitrile.

Fig. S8. The scatter plots of the sign(λ_2) ρ versus δg and isosurface density (inset) for the IPO-Me compounds at M06-2X/6-311++G(d,p) method in acetonitrile. The ground state (a), first excited singlet state (b) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfoxide and ground state

Fig. S9. ELF diagram of IPO-Me compounds in different electronic states at M06-2X/6-311++G(d,p) method in acetonitrile. The ground state (a), first excited singlet state (b) for IPO-Me-Sulfoxide and ground state (c), first excited singlet state (d) for IPO-Me-Sulfenic.

Fig. S10. Calculated (a) absorption, emission spectra $(S_1 \rightarrow S_0)$, and (b) FMOs $(S_1 \rightarrow S_0)$ of IPO-Me-Sulfoxide (up) and IPO-Me-Sulfenic (bottom) with STEOM-CCSD/cc-pVQZ//M06-2X/6-311++G(d,p) in acetonitrile.

Fig. S11. The reactants, transition states, intermediates, and products of IPO-Me-Sulfoxide and IPO-Me-Sulfenic conversion in (a) ground state (CCSD/cc-pVQZ//M06-2X/6-311++G** in acetonitrile) and (b) first excited singlet state (STEOM-CCSD/cc-pVQZ//M06-2X/6-311++G** in acetonitrile).

Fig. S12. Potential energy surfaces and corresponding structure of IPO-Me compounds with M06-2X/6-311++G(d,p) method in acetonitrile at (a) ground state and (b) first excited singlet state compounds with M06-2X/6-311++G(d,p) method in acetonitrile at (a) ground state and (b) first excited singlet state. 3D potential energy surface (left) and its corresponding planar projection (right).

Molecule State S–O…H (Å) $S=O\cdots H(Å)$ 0.992 S_0 1.661 IPO-Me-Sulfoxide \mathbf{S}_1 1.033 1.460 0.979 1.806 S_0 IPO-Me-Sulfenic \mathbf{S}_1 0.978 1.947

Table S1. The S–O···H and S=O···H bond length of IPO-Me at the ground and first excited singletstates with M06-2X/6-311++G(d,p) method in acetonitrile.

Table S2. Calculated absorption (λ_{abs}), vertical emission wavelength (λ_{em} , $S_1 \rightarrow S_0$), stokes shift ($\Delta \bar{v}$), oscillator strengths (*f*), charge transfer percentage (CTP) main transition orbital composition, and molecular orbital configuration coefficient (CI) of IPO-Me-Sulfoxide and IPO-Me-Sulfenic with STEOM-CCSD/cc-pVQZ//M06-2X/6-311++G(d,p) in acetonitrile.

Molecule	$\lambda_{ex}(nm)$	$f_{ m ex}$	$\lambda_{em}(nm)$	$f_{ m em}$	$\Delta\lambda$ (cm ⁻¹)	$\mathrm{CI} \ (\mathrm{S}_1 \to \mathrm{S}_0)$	СТР
							(%)
IPO-H- Sulfoxide	376.33	0.0041	524.37	0.0454	7501.92		
	333.15	0.0361				HOMO- LUMO:90.41%	38.73
	285.78	0.0326					
	264.84	0.0223					
	235.03	0.1788					
IPO-H- Sulfenic	374.62	0.0104	541.15	0.0294	8214.55	HOMO	30.97
	328.65	0.0281					
	303.10	0.0227				LUMU:94.13%	

	Ground state	Excited state				
Molecule		Path one ^a		Path two ^b		
		Step one	Step two	Step one	Step two	
IPO-H-Sulfoxide	24.12	18.90	10.06	9.44	3.96	
IPO-Me-Sulfoxide	21.27	19.75	16.75	12.29	10.70	

Table S3. Calculated gibbs free energy(kcal/mol) of transition state with CASSCF in acetonitrile.

^a path one: break the S⁵–H⁴ bond, form S³–H⁴ firstly and break the O²–H¹ bond, form O⁶–H¹ secondly, ^b path two: break the O²–H¹ bond, form O⁶–H¹ firstly and break the S⁵–H⁴ bond, form S³–H⁴ secondly.