Supplementary materials for

Multifunctional amorphous FeCoNiTi_xSi high-entropy alloys with excellent electromagnetic-wave absorption performances

Lei Jia^a, Linwen Jiang^{a,*}, Haoran Zhou^a, Siqin Yan^{a,b}, Anhua Wu^c, Xiaofeng Zhang^{b,*}

^aSchool of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, PR China ^bInstitute of New Materials, Guangdong Academy of Science, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangzhou 510651, PR China ^cShanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, PR China

Supplementary Table and Figures

Table 51	Table ST Weiting point, Crystal structure, and atomic radius.								
Element	Fe	Со	Ni	Ti	Si				
Melting point (°C)	1538	1495	1455	1668	1414				
Crystal structure	BCC	НСР	FCC	НСР	FCC				
Atomic radius (pm)	126	125	124	147	111				

 Table S1 Melting point, Crystal structure, and atomic radius.

$$\Omega = \frac{T\Delta S_{mix}}{|\Delta H_{mix}|}$$
(S1)
$$\delta = \sqrt{\sum_{i=1}^{n} c_i (1 - r_i / \bar{r})^2}$$
(S2)
$$VEC = \sum_{i}^{n} c_i (VEC)_i$$
(S3)

Where c_i is the mole fraction of element i. \bar{r} and T_m are the average atomic radius and the melting point of the alloy, respectively. The ΔH_{ij}^{mix} represents the mixing enthalpy of a binary system of equimolar composition in the liquid phase.

Table S2 Grain sizes, internal stress, the crystallinity and lattice constant of samples

Samples	#T001	#T010	#T030
Grain size (nm)	10.2	12	12.8
Intrinsic strain $(\epsilon^* 10^{-3})$	0.892	0.768	0.718
Crystallinity(%)-BCC	57.15	59.95	64.51
Lattice Constant(A)-BCC	4.0508	4.0509	4.3609

Fig. S1 XRD diagram of #T001, #T010, and #T030 after annealing.

ΔH_{ij}^{mix} (kJ×mol ⁻¹)							
Fe	-1	-2	-17	-35			
1	Co	0	-28	-38			
1	/	Ni	-35	-40			
/	/	/	Ti	-45			
/	/	/	/	Si			

Table S3 Binary mixing enthalpies for each atom pair in Fe–Co–Ni–Ti–Si alloys.

Table S4 Chemical Compositions of samples #T001, #T010, #T030, #T100 and #T200.

Samplas —		Atomic percent(%)						
Samples —	Fe	Со	Ni	Ti	Si			
#T001	27.49	27.77	25.92	0.34	18.48			
#T010	26.18	26.89	24.58	2.5	19.85			
#T030	26.08	23.83	22.50	8.86	18.72			
#T100	23.19	21.64	20.27	19.76	15.14			
#T200	33.41	17.27	17.17	33.41	12.91			

Table S5 Electrochemical parameters of equivalent circuit under different stray current densities.

Samplas	R _s	CPE ₁ -T	CPE ₁ -T CPE ₁ -P		CPE ₂ -P	D 1	р 1
Samples	$(\Omega \text{ cm}^2)$	$\mu\Omega^{-1} \ cm^2 \ s^p)$	(F/cm)	$(\mu\Omega^{-1}\ cm^2\ s^p)$	(F/cm)	K _{ct} 1	R _{ct} 2
#T001	4.088	0.00034277	0.67895	0.00017381	0.92338	127.6	33639
#T010	3.308	0.00026379	0.67015	0.00016832	0.91616	109.1	129390
#T030	3.584	0.00030884	0.67077	0.00018296	0.86741	123.9	694680

#T100	3.768	0.0003933	0.70339	0.00017699	0.88591	63.22	1.202E7
#T200	3.575	0.00024919	0.67073	0.00015231	0.90477	84.9	300370

Rs represents the solution resistance, CPE_1 the double-layer capacitance at the passivation film/material interface, $R_{ct}1$ the electrochemical transfer resistance, CPE_2 the passivation film capacitance, and $R_{ct}2$ the ion transport resistance in the passivation film.

Fig. S2 The comparison of oxidation resistance properties with other related materials.¹⁻⁶

Fig. S3 Conductivity of FeCoNiTi_xSi (x = 0.01, 0.1, 0.3, 1 and 2) HEAs powders under different pressures.

Table S6 The detailed conductivity of FeCoNiTi_xSi (x = 0.01, 0.1, 0.3, 1, and 2) HEAs under different pressures.

Pressure	Conductivity (S/mm)						
(MPa)	#T001	#T010	#T030	#T100	#T200		
15	3.6	4.8	3.8	4.4	3.7		
20	4.6	5.8	5	5.7	4.7		
25	5.6	7.1	6.3	6.8	5.8		

Table S7 The detailed data of EMW absorption properties of FeCoNiTixSi (x = 0.01, 0.1, 0.3, 1, and 2) HEAs in the 2–18 GHz range.

Samples	RL _{min} (dB)	Frequency (GHz)	d _{min}	Bandwidth (GHz)	RL<-10 dB	d (mm)
#T001	-68.4	6.14	3.08	5.15	11.67-16.82	1.69
#T010	-28.3	8.96	2.76	3.68	9.86-13.54	2.31
#T030	-30.5	10.80	2.32	4.03	11.48-15.51	1.94
#T100	-63.4	9.12	2.18	3.64	13.80-17.45	1.42
#T200	-21.3	18	4	-	-	-

 Table S8 The comparison of comprehensive properties with related materials.

	RL _{min}	EMB	dm	Nanohardness	i _{corr}	Dof
	(dB)	(GHz)	(mm)	(Gpa)	(µA/cm ²)	Kei.
#T001	-68.4	5.12	1.69	3.97	1.64	This work
#T100	-63.4	3.64	1.42	3.07	1.49	This work
FeSi	-19.3	3.9	3.03	-	-	Ref. 40
FeSiAl	-39.7	0.85	4	-	-	Ref. 36
FeCoNiCrMn	-	-	-	2.35	-	Ref. 43
FeCoNiCuAlCe _{0.09}	-	-	-	-	4.01	Ref. 46
FeCrMoNiPBCSi	-60.3	2.3	3.55	-	-	Ref. 16
FeCoNiMn _{0.5} Al _{0.4}	-42.9	4.4	3	-	-	Ref. 38
Fe _{77.6} Si _{12.3} Al _{10.1}	-22.2	6	2	-	-	Ref. 35
FeCoNiCuTi _{0.2}	-47.8	4.76	2.16	-	0.949	Ref. 15
FeCoNiCuC _{0.04}	-61.1	5.1	1.72	3.42	5.14	Ref. 41
$FeCoNi(Si_{0.6}Al_{0.2}B_{0.2})$	-44.1	3.8	2	-	-	Ref. 44
$Ti_{21.6}Al_{11.3}Cr_{19.4}Si_{23.5}V_{22.0}O_{2.2}$	-	-	-	-	6.14	Ref. 39
HCNs	-45.7	3.9	3.6	-	-	Ref. 34
Co_4Fe_6	38.7	6.9	2	-	-	Ref. 45
$Mg_{65}Ni_{20}Nd_{15}$	-	-	-	3.4	-	Ref. 42
FeCoNiMn _{0.5} Al _{0.2}	-44.4	3.825	3	3.97	-	Ref. 37

Reference:

- H. Zhou, L. Jiang, S. Zhu, L. Wang, Y. Hu, X. Zhang and A. Wu, J. Alloys Compd., 2023, 936, 168282.
- 2. X. Liu, Y. Duan, Z. Li, H. Pang, L. Huang, X. Yang, Y. Shi, T. Wang and X. Lv, ACS Appl. Mater. Interfaces, 2022, 14, 7012-7021.
- 3. J. Yang, L. Jiang, Z. Liu, Z. Tang and A. Wu, J. Mater. Sci. Technol., 2022, 113, 61-70.
- 4. N. T. B. N. Koundinya, C. Sajith Babu, K. Sivaprasad, P. Susila, N. Kishore Babu and J. Baburao, *J. Mater. Eng. Perform.*, 2013, **22**, 3077-3084.
- 5. H. Zhou, L. Jiang, S. Zhu, L. Jia, A. Wu and X. Zhang, J. Alloys Compd., 2023, 946, 169402.
- 6. H. Zhou, L. Jiang, L. Jia, Z. Tang, L. Wang, A. Wu and X. Zhang, *Journal of Materials Chemistry C*, 2022, **10**, 16696-16705.