Supplementary Information

Jordan A. Claus¹, Celina Bermúdez^{1,2}, Valérie Vallet¹, Laurent Margulès¹, and Manuel Goubet¹

¹Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France

²Departamento de Química Física y Química Inorgánica, Facultad de Ciencias - I.U. CINQUIMA, Universidad de Valladolid, Valladolid 47011, Spain

Email ids: ¹jordan.claus@univ-lille.fr; valerie.vallet@univ-lille.fr; laurent.margules@univ-lille.fr; manuel.goubet@univ-lille.fr, ²celina.bermudez@uva.es

Abstract

1	Full set of calculated relative energies (in kJ/mol), rotational constants (in MHz) and dipole moment components (in D)	3
2	Cartesian coordinates for the optimized geometry for the α -naphthaldehyde water complex (<i>cis</i> - α -I) ob-	0
-	served at the MP2/aug-cc-pVTZ level of theory	4
3	Cartesian coordinates for the optimized geometry for the α -naphthaldehyde water complex (<i>cis</i> - α -I) ob-	
	served at the B98/aug-cc-pVQZ level of theory	5
4	Cartesian coordinates for the optimized geometry for the β -naphthaldehyde water complex (trans- β -I)	
	observed at the MP2/aug-cc-pVTZ level of theory	6
5	Cartesian coordinates for the optimized geometry for the β -naphthaldehyde water complex (<i>trans-β-I</i>)	
	observed at the B98/aug-cc-pVQZ level of theory	7
6	Cartesian coordinates for the optimized geometry for the β -naphthaldehyde water complex (trans- β -II)	
	observed at the MP2/aug-cc-pVTZ level of theory	8
7	Cartesian coordinates for the optimized geometry for the β -naphthaldehyde water complex (trans- β -II)	
	observed at the B98/aug-cc-pVQZ level of theory	9
8	List of assigned rotational transitions for the most stable conformer of α -naphthaldehyde (<i>cis</i> - α -I) and their	
	simulations out of the best fit using SPFIT program	10
9	List of assigned rotational transitions for the second most stable conformer of β -naphthaldehyde (<i>trans-β-I</i>)	
	and their simulations out of the best fit using SPFIT program	13
10	List of assigned rotational transitions for the most stable conformer of β -naphthaldehyde (<i>trans</i> - β -II) and	
	their simulations out of the best fit using SPFIT program	14
11	Calculated natural charges of cis - α -naphthaldehyde and its hydrate cis - α -I, and the electronic charge variation	16
12	Calculated natural charges of $trans-\beta$ -naphthaldehyde and its hydrate $trans-\beta$ -I, and the electronic charge	
	variation	17
13	Calculated natural charges of $trans-\beta$ -naphthaldehyde and its hydrate $trans-\beta$ -II, and the electronic charge	
	variation	18
14	Structures, relative energies, rotational constants and dipole moment components of the most stables dihy-	
	drates for α -naphthaldehyde at MP2/aug-cc-pVTZ level of theory.	19
15	Structures, relative energies, rotational constants and dipole moment components of the most stables dihy-	
	drates for β -naphthaldehyde at MP2/aug-cc-pVTZ level of theory.	19

Figure 1: Enlarged version of figure 1.

Table 1: Full set of calculated relative energies (in kJ/mol), rotational constants (in MHz) and dipole moment components (in D).

species	c-α-I MP2/aι	c-α-II 1g-cc-pVT	$c-\alpha$ -III Z	c- α -IIIb	c- $\alpha\text{-IVa}$	c- α -IVb	t- α -I	t- α -II	t- α -III	t- $\alpha\text{-IIIb}$	t- $\alpha\text{-IVa}$	t- α -IVb
ΔE_{ZPE}	0.00	1.74	10.18	9.80	4.38	4.64	6.23	6.85	14.90	16.97	12.09	12.31
A	1317.5	1024.2	1343.5	1187.2	980.2	942.2	1211.6	1618.4	890.4	1159.0	1114.2	1089.1
В	501.9	678.8	512.6	556.9	721.7	771.2	521.3	481.3	706.9	537.0	630.3	654.9
С	363.4	408.6	371.7	379.8	549.6	568.9	364.5	372.0	394.8	367.6	532.2	546.6
μ_a	3.2	3.0	2.1	5.5	0.1	1.6	-2.9	-3.2	4.2	5.7	2.3	3.4
μ_b	-0.7	-1.4	2.6	-1.8	2.4	1.7	0.6	-0.4	-0.9	0.0	1.1	-0.2
μ_c	0.0	-0.5	0.0	0.0	-1.9	2.5	0.0	-0.5	-0.7	0.0	-2.5	-2.4
	B98/au	g-cc-pV12	2									
ΔE_{ZPE}	0.0	1.40	8.53	7.72			4.80	5.38	14.49	15.34		
A	1296.0	1026.0	1339.6	1179.0			1248.1	1630.3	887.0	1141.4		
В	489.7	650.7	498.5	541.8			490.3	471.7	684.4	525.7		
C	355.4	398.0	363.9	371.8			352.0	300.1	387.0	360.5		
μ_a	-4.2	-3.7	1.8	5.8 1.7			-3.9	-3.8	-0.0	0.0		
μ_b	-0.8	-1.5	2.1	-1.7			1.0	-0.1	2.2	-0.1		
μ_c	B3LYP	/6-311g++	0.0 ⊦(d,p)	0.0			0.0	-0.7	0.0	0.0		
ΔE_{ZPE}	0.0	3.29	10.84	10.94			6.48	6.88	16.79	18.12		
А	1285.1	1024.1	1337.2	1180.0			1251.4	1626.5	887.1	1148.6		
В	489.4	656.1	508.6	552.7			487.1	474.6	699.4	534.0		
С	354.4	400.2	369.1	377.1			350.6	367.5	391.8	365.1		
μ_a	-4.4	-3.7	2.2	6.1			-3.9	-3.7	-0.4	6.4		
μ_b	-0.6	-1.5	3.0	-1.9			1.2	-0.2	2.7	0.0		
μ_c	0.0 D91 VD	0.9	0.0	0.0			0.0	-0.7	0.0	0.0		
	DOLIF-	-D3/0-311	$g_{++}(a,p)$									
ΔE_{ZPE}	0.0	2.24										
A	1301.4	1021.2										
В	497.2	677.9										
C	359.8	407.8										
μ_a	-0.7	-23										
μ_b	-0.7	-0.9										
	± Q T	4 Q II	↓ Q III	+ Q IIIh	+ Q IVo	+ Q IVI	e Q I	o Q II	o Q III	e la IVe	e Q IVh	
species	MP2/aι	ıg-cc-pVT	Έ- <i>β</i> -111 Ζ	ι-ρ-1110	t-p-1va	ι- <i>ρ</i> -ινυ	с- <i>р</i> -1	c - <i>ρ</i> -Π	c - <i>ρ</i> -111	c- <i>μ</i> -1va	C- <i>p</i> -1vb	
ΔE_{ZPE}	1.78	0.00	11.20	10.52	6.91	7.15	5.37	2.28	15.40	10.33	10.66	
А	2250.2	1946.1	1126.0	981.5	1511.2	1488.9	2383.6	1310.1	1492.6	1386.5	1316.5	
В	349.3	408.9	523.6	582.1	476.0	495.2	348.1	525.2	429.2	498.7	530.4	
\mathbf{C}	302.4	337.9	358.0	366.0	461.6	478.3	303.8	374.9	333.9	471.4	483.2	
μ_a	-3.7	3.1	1.6	3.2	-2.7	-3.9	-3.6	-2.0	-0.6	-1.6	-3.3	
μ_b	-0.4	-1.4	3.8	3.5	-0.5	1.7	-0.3	-1.8	3.7	-1.7	0.1	
μ_c	0.0 B98/au	0.0 g-cc-pVT2	0.0 Z	0.0	-2.5	-1.7	0.0	0.0	0.0	-2.4	-2.3	
ΔE_{ZDE}	0.21	0.0		9.80			3.57	1.81	14.09			
A	2369.6	1950.9		944.7			2364.6	1301.9	1459.3			
В	334.7	402.3		580.0			338.9	517.1	422.2			
С	293.3	333.6		360.0			296.4	370.2	328.0			
μ_a	-4.6	-3.8		3.3			-4.6	-2.5	-0.3			
μ_b	-0.5	-1.4		-3.5			-0.2	-1.9	3.6			
μ_c	0.0	-0.7		0.0			0.0	-0.5	0.0			
	B3LYP	/6-311g+-	⊦(d,p)									
ΔE_{ZPE}	0.51	0.0		11.94			3.71	1.42	14.78			
А	2416.0	1945.7		970.7			2341.8	1305.9	1478.7			
В	330.3	404.4		579.4			336.8	519.5	427.3			
\mathbf{C}	290.6	334.9		363.4			294.5	371.7	332.0			
μ_a	-4.9	-3.7		-3.5			-4.9	-2.5	-0.4			
μ_b	-0.7	-1.4		3.7			-0.1	-1.9	4.0			
μ_c	0.0	-0.7		0.0			0.0	-0.7	0.0			

c and t stand for *cis* and *trans*, respectively. Group IV structures have been calculated at the MP2 level only. The *trans*- β -III structure is not converging using DFT methods. Tests calculations including London dispersion were only performed on the two lowest energy conformers of the α -naphthaldehyde monohydrate.

Table 2: Cartesian coordinates for the optimized geometry for the α -naphthaldehyde water complex (*cis*- α -I) observed at the MP2/aug-cc-pVTZ level of theory

Number	Atom	х	У	Z
		α -cis	5-I	
1	С	-0.627172	-0.632555	0.000 003
2	\mathbf{C}	-0.530245	-2.016898	0.000006
3	\mathbf{C}	0.715585	-2.664579	-0.000001
4	\mathbf{C}	1.869514	-1.913161	-0.000006
5	\mathbf{C}	3.011728	0.262375	-0.000001
6	\mathbf{C}	2.964172	1.638726	0.000005
7	\mathbf{C}	1.720732	2.299458	0.000011
8	\mathbf{C}	0.537959	1.587542	0.000007
9	\mathbf{C}	0.553103	0.172303	0.000000
10	\mathbf{C}	1.819637	-0.498427	-0.000003
11	Η	-0.410635	2.101677	0.000009
12	Η	1.689179	3.381509	0.000018
13	Η	3.881631	2.213041	0.000008
14	Η	3.962564	-0.257664	-0.000004
15	Η	2.839451	-2.397766	-0.000011
16	Η	0.765762	-3.745321	-0.000002
17	Η	-1.443701	-2.601566	0.000012
18	Η	-2.774856	-0.902879	0.000036
19	0	-2.346626	1.063605	-0.000039
20	\mathbf{C}	-2.002892	-0.113416	0.000001
21	Η	-4.253256	0.867913	-0.000013
22	Ο	-5.084197	0.365227	0.000025
23	Η	-5.774338	1.032993	-0.000090

Table 3: Cartesian coordinates for the optimized geometry for the α -naphthaldehyde water complex (*cis*- α -I) observed at the B98/aug-cc-pVQZ level of theory

Number	Atom	Х	У	Z
		α -cis	-I	
1	С	-0.578747	-0.712461	0.008885
2	\mathbf{C}	-0.392716	-2.084200	0.006300
3	\mathbf{C}	0.890226	-2.657222	-0.000788
4	\mathbf{C}	1.991519	-1.839571	-0.005423
5	\mathbf{C}	3.007220	0.405208	-0.009187
6	С	2.881242	1.770881	-0.008229
7	С	1.599119	2.356335	-0.001845
8	С	0.464193	1.579478	0.003886
9	С	0.558390	0.165537	0.003402
10	С	1.860936	-0.427288	-0.003642
11	Η	-0.511828	2.038299	0.008296
12	Η	1.505640	3.435162	-0.001757
13	Η	3.762033	2.400325	-0.012691
14	Η	3.986713	-0.058142	-0.014479
15	Η	2.988122	-2.265826	-0.010879
16	Η	1.002561	-3.733336	-0.002633
17	Н	-1.264765	-2.728460	0.009823
18	Η	-2.705427	-1.116783	0.018908
19	Ο	-2.402839	0.865679	0.024205
20	\mathbf{C}	-1.985734	-0.275591	0.017761
21	Η	-4.331223	0.776417	-0.016066
22	0	-5.236528	0.433292	-0.054156
23	Η	-5.778038	1.103328	0.364420

Table 4: Cartesian coordinates for the optimized geometry for the β -naphthaldehyde water complex (*trans-\beta-I*) observed at the MP2/aug-cc-pVTZ level of theory

Number	Atom	X	У	Z
		β -tran	ns-I	
1	С	0.199729	0.833163	0.000 046
2	С	1.082577	-0.230091	0.000039
3	С	0.609044	-1.563602	0.000002
4	\mathbf{C}	-0.742964	-1.804608	-0.000027
5	С	-3.070525	-0.961984	-0.000048
6	С	-3.955005	0.095922	-0.000038
7	\mathbf{C}	-3.478742	1.423823	0.000000
8	\mathbf{C}	-2.124588	1.678364	0.000027
9	С	-1.195025	0.611974	0.000019
10	С	-1.675908	-0.735681	-0.000019
11	Η	-1.755175	2.697252	0.000056
12	Η	-4.182789	2.245836	0.000008
13	Η	-5.021007	-0.091489	-0.000059
14	Η	-3.436401	-1.982206	-0.000077
15	Η	-1.117747	-2.821806	-0.000057
16	Η	1.329267	-2.371450	-0.000004
17	Η	0.580607	1.850264	0.000074
18	Η	2.800163	1.123054	0.000096
19	0	3.394637	-0.806288	0.000067
20	С	2.523628	0.054901	0.000069
21	Η	4.969556	0.292136	-0.000055
22	Ο	5.444932	1.138895	-0.000132
23	Η	6.374484	0.897825	0.000217

Table 5: Cartesian coordinates for the optimized geometry for the β -naphthaldehyde water complex (*trans-\beta-I*) observed at the B98/aug-cc-pVQZ level of theory

Number	Atom	Х	У	Z
		β -trans	3-I	
1	С	0.149870	0.864806	0.007410
2	\mathbf{C}	1.057695	-0.172742	0.006111
3	\mathbf{C}	0.604929	-1.519462	0.000175
4	С	-0.734191	-1.789480	-0.004099
5	С	-3.087260	-0.991951	-0.007191
6	\mathbf{C}	-3.988042	0.045145	-0.005910
7	\mathbf{C}	-3.540548	1.384993	-0.000173
8	\mathbf{C}	-2.197127	1.663884	0.004204
9	\mathbf{C}	-1.242344	0.615999	0.003055
10	\mathbf{C}	-1.694777	-0.739708	-0.002780
11	Η	-1.848553	2.689844	0.008519
12	Η	-4.263298	2.190804	0.000686
13	Η	-5.050772	-0.161999	-0.009369
14	Η	-3.433883	-2.018461	-0.011666
15	Η	-1.085852	-2.814438	-0.008743
16	Η	1.341215	-2.312272	-0.001077
17	Η	0.504466	1.890520	0.011681
18	Η	2.742423	1.219775	0.015036
19	0	3.381598	-0.688503	0.010476
20	\mathbf{C}	2.495756	0.140902	0.010814
21	Η	5.067757	0.251782	-0.011669
22	0	5.720256	0.967674	-0.032090
23	Η	6.551468	0.558816	0.211322

Table 6: Cartesian coordinates for the optimized geometry for the β -naphthaldehyde water complex (*trans-\beta-II*) observed at the MP2/aug-cc-pVTZ level of theory

Number	Atom	X	У	Z
		β -tran	is-II	
1	С	-0.095061	-1.366702	0.000 003
2	С	1.120578	-0.706472	0.000015
3	\mathbf{C}	1.175945	0.709118	0.000025
4	\mathbf{C}	0.005276	1.428377	0.000020
5	\mathbf{C}	-2.469208	1.508292	-0.000001
6	С	-3.682383	0.852760	-0.000011
7	С	-3.731400	-0.557222	-0.000012
8	С	-2.567591	-1.294805	-0.000007
9	\mathbf{C}	-1.309627	-0.647519	0.000001
10	\mathbf{C}	-1.257201	0.782091	0.000007
11	Η	-2.601683	-2.378129	-0.000008
12	Η	-4.689720	-1.060304	-0.000017
13	Η	-4.603423	1.421276	-0.000018
14	Η	-2.431339	2.591448	-0.000001
15	Η	0.035399	2.511985	0.000027
16	Η	2.133547	1.212922	0.000027
17	Η	-0.118601	-2.452723	0.000002
18	Η	2.162709	-2.616409	-0.000016
19	0	3.485532	-1.097396	-0.000002
20	С	2.340228	-1.526138	-0.000001
21	Η	4.245788	0.653557	-0.000022
22	Ο	4.401908	1.611067	-0.000038
23	Н	5.357722	1.706465	0.000181

Table 7: Cartesian coordinates for the optimized geometry for the β -naphthaldehyde water complex (*trans-\beta-II*) observed at the B98/aug-cc-pVQZ level of theory

Number	Atom	х	У	Z
		β -tran	is-II	
1	С	-0.105327	1.359358	-0.004035
2	\mathbf{C}	1.110670	0.707163	0.015213
3	\mathbf{C}	1.160016	-0.714137	0.035777
4	\mathbf{C}	-0.002752	-1.432517	0.035402
5	\mathbf{C}	-2.486242	-1.511901	0.012997
6	\mathbf{C}	-3.693187	-0.856528	-0.007262
7	\mathbf{C}	-3.744019	0.555350	-0.026934
8	\mathbf{C}	-2.583723	1.287341	-0.026037
9	\mathbf{C}	-1.322198	0.640378	-0.005442
10	\mathbf{C}	-1.270208	-0.787559	0.014524
11	Η	-2.616866	2.370382	-0.041259
12	Η	-4.703433	1.056380	-0.042853
13	Η	-4.615900	-1.423084	-0.008347
14	Η	-2.450798	-2.594644	0.027892
15	Η	0.028750	-2.515494	0.050779
16	Η	2.119071	-1.215156	0.053091
17	Η	-0.133400	2.444334	-0.019103
18	Η	2.152317	2.618831	0.005612
19	Ο	3.472245	1.107532	0.020294
20	С	2.334541	1.525839	0.013594
21	Η	4.298516	-0.646235	-0.040519
22	Ο	4.515602	-1.588369	-0.081718
23	Η	5.390092	-1.665558	0.301397

Table 8: List of assigned rotational transitions for the most stable conformer of α -naphthaldehyde (*cis*- α -I) and their simulations out of the best fit using SPFIT program

J'	K'_a	K'_c	J	K_a	K_c	Obs./MHz	Calc.MHz	$\mathrm{Diff.}/\mathrm{MHz}$	Est. $\rm error/MHz$
8	0	8	$\overline{7}$	1	$\overline{7}$	6032.8139	6032.8130	0.0009	0.002
9	0	9	8	1	8	6781.8029	6781.8022	0.0007	0.004
10	0	10	9	1	9	7517.2609	7517.2622	-0.0013	0.004
11	0	11	10	1	10	8244.7380	8244.7366	0.0014	0.002
12	0	12	11	1	11	8967.6917	8967.6876	0.0042	0.002
13	0	13	12	1	12	9688.1550	9688.1566	-0.0016	0.004
14	0	14	13	1	13	10407.3002	10407.2988	0.0014	0.004
15	0	15	14	1	14	11125.7480	11125.7475	0.0006	0.002
16	0	16	15	1	15	11843.8436	11843.8406	0.0030	0.004
5	0	5	4	0	4	4002.6664	4002.6622	0.0042	0.002
6	0	6	5	0	5	4714.6928	4714.6915	0.0013	0.002
7	0	7	6	0	6	5419.1318	5419.1334	-0.0016	0.002
8	0	8	7	0	7	6124.4673	6124.4676	-0.0003	0.002
9	0	9	8	0	8	6833.2902	6833.2905	-0.0003	0.002
10	0	10	9	0	9	7545.3689	7545.3677	0.0012	0.002
11	0	11	10	0	10	8259.7446	8259.7454	-0.0008	0.002
12	0	12	11	0	11	8975.5669	8975.5651	0.0018	0.002
13	0	13	12	0	12	9692.2337	9692.2338	-0.0001	0.002
14	0	14	13	0	13	10409.3808	10409.3849	-0.0041	0.002
15	0	15	14	0	14	11126.8035	11126.8044	-0.0009	0.002
16	0	16	15	0	15	11844.3675	11844.3717	-0.0042	0.002
17	0	17	16	0	16	12562.0192	12562.0200	-0.0008	0.002
18	0	18	17	0	17	13279.7132	13279.7126	0.0006	0.002
19	0	19	18	0	18	13997.4316	13997.4291	0.0025	0.002
7	1	6	6	1	5	6176.4221	6176.4247	-0.0026	0.002
8	1	7	7	1	6	6939.8376	6939.8366	0.0010	0.002
9	1	8	8	1	7	7664.6763	7664.6754	0.0009	0.002
10	1	9	9	1	8	8364.6362	8364.6357	0.0005	0.002
11	1	10	10	1	9	9055.5713	9055.5733	-0.0020	0.002
12	1	11	11	1	10	9748.2425	9748.2415	0.0010	0.002
13	1	12	12	1	11	10446.8107	10446.8100	0.0007	0.002
14	1	13	13	1	12	11151.3775	11151.3766	0.0009	0.002
15	1	14	14	1	13	11860.5725	11860.5730	-0.0005	0.002
16	1	15	15	1	14	12572.9216	12572.9237	-0.0021	0.002
17	1	16	16	1	15	13287.2893	13287.2871	0.0022	0.002
7	2	5	6	2	4	6400.3341	6400.3330	0.0011	0.002
8	2	6	7	2	5	7324.3668	7324.3662	0.0006	0.002
9	2	7	8	2	6	8215.6377	8215.6370	0.0007	0.002
10	2	8	9	2	7	9066.6741	9066.6737	0.0004	0.002
11	2	9	10	2	8	9871.2784	9871.2798	-0.0014	0.002
12	2	10	11	2	9	10627.5119	10627.5119	0.0000	0.002
13	2	11	12	2	10	11341.7148	11341.7147	0.0001	0.002
14	2	12	13	2	11	12028.6718	12028.6733	-0.0015	0.002
15	2	13	14	2	12	12705.5829	12705.5838	-0.0009	0.002
16	2	14	15	2	13	13384.9316	13384.9315	0.0001	0.002
8	3	5	7	3	4	7128.1039	7128.1036	0.0003	0.002
9	3	6	8	3	5	8110.6799	8110.6816	-0.0017	0.002
10	3	7	9	3	6	9098.6993	9098.6993	0.0001	0.002

Continued on next page...

Table 8 – Continued from previous page

						0 0 0 0 0 0 0 0 0 0	I I I I I I I I I I I I I I I I I I I	F0 -	
J'	K'_a	K'_c	J	K_a	K_c	Obs./MHz	Calc./MHz	$\mathrm{Diff.}/\mathrm{MHz}$	Est. $\rm error/MHz$
11	3	8	10	3	7	10072.5012	10072.5030	-0.0018	0.002
12	3	9	11	3	8	11016.3562	11016.3545	0.0017	0.002
14	3	11	13	3	10	12775.1907	12775.1871	0.0036	0.002
15	3	12	14	3	11	13577.7229	13577.7251	-0.0022	0.002
8	4	4	7	4	3	6947.7715	6947.7736	-0.0021	0.002
9	4	5	8	4	4	7857.2378	7857.2371	0.0007	0.002
10	4	6	9	4	5	8789.4010	8789.4034	-0.0024	0.002
1	4	7	10	4	6	9749.6307	9749.6300	0.0007	0.002
15	4	11	14	4	10	13757 3733	13757 3741	-0.0008	0.002
9	5	4	8	5	3	7783 6282	7783 6261	0.0021	0.002
0	5	5	g	5	4	8671 9507	8671 9492	0.0021	0.002
1	5	6	10	5	5	9570 3807	9570 3825	-0.0018	0.002
5	1	5	10	1	4	3870 4139	3870.4143	-0.0010	0.002
6	1	6	5	1	5	4616 4855	4616 4865	-0.0004	0.002
7	1	7	6	1	6	5353 8078	5353 8086	-0.0010	0.002
8	1	8	7	1	7	6084 3004	6084 3013	-0.0009	0.002
9	1	0	8	1 1	8	6800 0070	6800 0077		0.002
9 0	1 1	9 10	0	1 1	0	7529 2606	7539 9700	-0.0007	0.002
.0	1	10	9 10	1	9 10	7002.2090 8050.6150	2052.2109	-0.0013	0.002
. I 0	1	11	10	1	10	0202.0102 0071 7667	0202.0142	0.0010	0.002
.2	1	12	11	1	11	0600 2416	0600 2426	0.0019	0.002
.ə 	1	10	12	1	12 12	9090.2410	9090.2420	-0.0010	0.002
4 r	1	14	13	1	15	10406.3046 11106.0769	10 408.5558	-0.0010	0.002
.ə .c	1	10	14	1	14	11 120.2703	11 120.2785	-0.0022	0.002
0	1	10	15	1	15	11 844.1029	11844.1056	-0.0027	0.002
1	1	17	10	1	16	12 561.8837	12 561.8864	-0.0027	0.002
.8	1	18	17	1	17	13279.6480	13279.6460	0.0020	0.002
.9	1	19	18	1	18	13 997.3991	13 997.3961	0.0030	0.002
20	1	20	19	1	19	14715.1409	14715.1421	-0.0012	0.002
8	2	7	7	2	6	6643.7730	6643.7725	0.0005	0.002
9	2	8	8	2	7	7417.9830	7417.9820	0.0010	0.002
.0	2	9	9	2	8	8178.1643	8178.1645	-0.0002	0.002
.1	2	10	10	2	9	8926.1775	8926.1758	0.0017	0.002
.2	2	11	11	2	10	9664.3651	9664.3661	-0.0010	0.002
3	2	12	12	2	11	10395.1749	10395.1741	0.0008	0.002
4	2	13	13	2	12	11120.7937	11120.7935	0.0002	0.002
.6	2	15	15	2	14	12563.0405	12563.0430	-0.0025	0.002
7	2	16	16	2	15	13281.8389	13281.8393	-0.0004	0.002
8	2	17	17	2	16	13999.9336	13999.9330	0.0006	0.002
7	3	5	6	3	4	6042.5255	6042.5249	0.0006	0.002
8	3	6	7	3	5	6901.0930	6901.0951	-0.0021	0.002
9	3	7	8	3	6	7749.2226	7749.2216	0.0010	0.002
0	3	8	9	3	7	8583.7901	8583.7922	-0.0021	0.002
1	3	9	10	3	8	9402.5698	9402.5700	-0.0002	0.002
2	3	10	11	3	9	10204.3742	10204.3734	0.0008	0.002
3	3	11	12	3	10	10989.1485	10989.1494	-0.0009	0.002
6	3	14	15	3	13	13255.6848	13255.6830	0.0018	0.002
7	3	15	16	3	14	13989.7689	13989.7688	0.0001	0.002
7	4	4	6	4	3	6047.1615	6047.1620	-0.0005	0.002
8	4	5	$\overline{7}$	4	4	6926.8346	6926.8343	0.0003	0.002
9	4	6	8	4	5	7808.9943	7808.9957	-0.0014	0.002
0	4	7	9	4	6	8691.0423	8691.0396	0.0027	0.002
1	4	8	10	4	7	9569.5403	9569.5398	0.0005	0.002
	4	19	1/	4	11	12074 5406	12074 5401	0.0006	0.002

Continued on next page...

Table 8 – Continued from previous page
--

]	Table 8	- Continued	from previous	page	
J'	K_a'	K_c'	J	K_a	K_c	$\mathrm{Obs.}/\mathrm{MHz}$	Calc./MHz	$\mathrm{Diff.}/\mathrm{MHz}$	Est. $\rm error/MHz$
16	4	13	15	4	12	13784.9113	13784.9111	0.0002	0.002
9	5	5	8	5	4	7781.1181	7781.1168	0.0013	0.002
10	5	6	9	5	5	8665.0801	8665.0813	-0.0012	0.002
9	1	9	8	0	8	6861.3915	6861.3959	-0.0044	0.004
10	1	10	9	0	9	7560.3794	7560.3764	0.0030	0.004
11	1	11	10	0	10	8267.6249	8267.6229	0.0020	0.002
12	1	12	11	0	11	8979.6432	8979.6423	0.0009	0.002
13	1	13	12	0	12	9694.3198	9694.3199	-0.0001	0.004
14	1	14	13	0	13	10410.4441	10410.4418	0.0023	0.004
15	1	15	14	0	14	11127.3368	11127.3355	0.0013	0.002
16	1	16	15	0	15	11844.6362	11844.6367	-0.0005	0.004

Table 9: List of assigned rotational transitions for the second most stable conformer of β -naphthaldehyde (*trans-\beta-I*) and their simulations out of the best fit using SPFIT program

J'	K_a'	K_c'	J	K_a	K_c	Obs./MHz	Calc.MHz	Diff./MHz	Est. error/MHz
8	0	8	7	0	$\overline{7}$	5068.8528	5068.8522	0.0006	0.002
9	0	9	8	0	8	5684.5666	5684.5663	0.0003	0.002
10	0	10	9	0	9	6295.2149	6295.2152	-0.0003	0.002
11	0	11	10	0	10	6901.0905	6901.0909	-0.0004	0.002
12	0	12	11	0	11	7502.7357	7502.7370	-0.0013	0.002
13	0	13	12	0	12	8100.8832	8100.8833	-0.0001	0.001
14	0	14	13	0	13	8696.3517	8696.3514	0.0003	0.001
15	0	15	14	0	14	9289.9571	9289.9554	0.0017	0.002
16	0	16	15	0	15	9882.4280	9882.4220	0.0060	0.004
8	1	7	7	1	6	5296.2419	5296.2373	0.0046	0.002
9	1	8	8	1	7	5952.4827	5952.4822	0.0005	0.002
10	1	9	9	1	8	6606.4412	6606.4379	0.0033	0.002
11	1	10	10	1	9	7257.7190	7257.7172	0.0019	0.002
12	1	11	11	1	10	7905.8992	7905.8985	0.0007	0.002
13	1	12	12	1	11	8550.5301	8550.5316	-0.0015	0.002
14	1	13	13	1	12	9191.1433	9191.1485	-0.0052	0.002
10	2	8	9	2	$\overline{7}$	6516.7601	6516.7573	0.0028	0.002
11	2	9	10	2	8	7186.9456	7186.9434	0.0022	0.004
12	2	10	11	2	9	7859.8570	7859.8549	0.0021	0.004
13	2	11	12	2	10	8534.5996	8534.5993	0.0003	0.002
14	2	12	13	2	11	9210.1777	9210.1803	-0.0026	0.002
10	3	7	9	3	6	6437.0456	6437.0457	-0.0001	0.002
12	3	9	11	3	8	7737.5534	7737.5547	-0.0013	0.002
9	1	9	8	1	8	5550.8602	5550.8637	-0.0035	0.002
10	1	10	9	1	9	6162.5302	6162.5315	-0.0013	0.002
11	1	11	10	1	10	6772.8708	6772.8729	-0.0021	0.002
12	1	12	11	1	11	7381.8808	7381.8808	0.0000	0.002
13	1	13	12	1	12	7989.5738	7989.5730	0.0008	0.002
14	1	14	13	1	13	8595.9893	8595.9902	-0.0009	0.002
15	1	15	14	1	14	9201.1949	9201.1918	0.0031	0.002
10	2	9	9	2	8	6396.1939	6396.1982	-0.0043	0.002
11	2	10	10	2	9	7030.8218	7030.8211	0.0007	0.002
12	2	11	11	2	10	7664.0418	7664.0433	-0.0015	0.002
13	2	12	12	2	11	8295.7551	8295.7559	-0.0008	0.002
10	3	8	9	3	7	6430.3797	6430.3783	0.0014	0.002
12	3	10	11	3	9	7720.9093	7720.9073	0.0020	0.002

Table 10: List of assigned rotational transitions for the most stable conformer of β -naphthaldehyde (*trans-\beta*-II) and their simulations out of the best fit using SPFIT program

J'	K_a'	K_c'	J	K_a	K_c	Obs./MHz	Calc.MHz	$\mathrm{Diff.}/\mathrm{MHz}$	Est. $\rm error/MHz$
10	0	10	0		0			0.0010	0.0000
10	0	10	9	1	9	6520.8689	6520.8701	-0.0012	0.0020
11	0	11	10	1	10	7297.1015	7297.1007	0.0008	0.0020
12	0	12	11	1	11	8053.3278	8053.3297	-0.0019	0.0020
13	0	13	12	1	12	8791.3750	8791.3746	0.0004	0.0020
14	0	14	13	1	13	9513.7464	9513.7459	0.0005	0.0020
15	0	15	14	1	14	10223.1460	10223.1442	0.0018	0.0020
16	0	16	15	1	15	10922.1352	10922.1347	0.0005	0.0020
17	0	17	16	1	16	11612.9773	11612.9767	0.0006	0.0020
18	0	18	17	1	17	12 297.5613	12 297.5618	-0.0005	0.0020
19	0	19	18	1	18	12977.4175	12977.4174	0.0001	0.0020
20	0	20	19	1	19	13653.7451	13653.7442	0.0009	0.0020
9	0	9	8	0	8	6390.0765	6390.0765	0.0000	0.0020
10	0	10	9	0	9	7056.9981	7056.9980	0.0002	0.0020
11	0	11	10	0	10	7719.6608	7719.6620	-0.0012	0.0020
12	0	12	11	0	11	8380.1894	8380.1908	-0.0014	0.0020
13	0	13	12	0	12	9040.1414	9040.1424	-0.0010	0.0020
14	0	14	13	0	13	9700.4781	9700.4781	0.0001	0.0020
15	0	15	14	0	14	10361.6761	10361.6758	0.0003	0.0020
16	0	16	15	0	15	11023.8881	11023.8888	-0.0007	0.0020
17	0	17	16	0	16	11687.0847	11687.0841	0.0006	0.0020
18	0	18	17	0	17	12351.1403	12351.1406	-0.0003	0.0020
19	0	19	18	0	18	13015.9076	13015.9091	-0.0015	0.0020
20	0	20	19	0	19	13681.2433	13681.2436	-0.0003	0.0020
8	1	7	7	1	6	6117.7333	6117.7338	-0.0005	0.0020
9	1	8	8	1	7	6863.3154	6863.3153	0.0002	0.0020
10	1	9	9	1	8	7600.8875	7600.8874	0.0001	0.0020
11	1	10	10	1	9	8329.0663	8329.0670	-0.0007	0.0020
12	1	11	11	1	10	9046.5714	9046.5714	0.0000	0.0020
13	1	12	12	1	11	9752.4291	9752.4287	0.0004	0.0020
14	1	13	13	1	12	10446.2317	10446.2314	0.0003	0.0020
15	1	14	14	1	13	11128.3653	11128.3648	0.0005	0.0020
16	1	15	15	1	14	11800.1034	11800.1030	0.0004	0.0020
17	1	16	16	1	15	12463.4883	12463.4885	-0.0002	0.0020
18	1	17	17	1	16	13120.9990	13120.9982	0.0008	0.0020
19	1	18	18	1	17	13775.1109	13775.1116	-0.0007	0.0020
20	1	19	19	1	18	14427.9382	14427.9387	-0.0005	0.0020
8	2	6	7	2	5	6040.2265	6040.2274	-0.0009	0.0020
9	2	7	8	2	6	6826.1484	6826.1484	0.0000	0.0020
10	2	8	9	2	7	7615.0391	7615.0405	-0.0014	0.0020
11	2	9	10	2	8	8403.9461	8403.9448	0.0013	0.0020
12	2	10	11	2	9	9190.1248	9190.1239	0.0009	0.0020
13	2	11	12	2	10	9971.3123	9971.3122	0.0001	0.0020
14	2	12	13	2	11	10745.7303	10745.7304	-0.0001	0.0020
15	2	13	14	2	12	11511.9590	11511.9593	-0.0003	0.0020
16	2	14	15	2	13	12268.7830	12268.7831	-0.0001	0.0020
17	2	15	16	2	14	13015.0755	13015.0752	0.0003	0.0020
18	2	16	17	2	15	13749.7624	13749.7629	-0.0005	0.0020
11	3	8	10	3	7	8201.4590	8201.4592	-0.0002	0.0020

Continued on next page. . .

Table 10 – Continued from previous page

J'	K_a'	K_c'	J	K_a	K_c	Obs./MHz	Calc./MHz	Diff./MHz	Est. error/MHz
12	3	9	11	3	8	8973.2888	8973.2890	-0.0002	0.0020
13	3	10	12	3	9	9753.2101	9753.2097	0.0004	0.0020
14	3	11	13	3	10	10541.2912	10541.2913	-0.0001	0.0020
15	3	12	14	3	11	11336.7868	11336.7873	-0.0005	0.0020
11	4	7	10	4	6	8142.4406	8142.4401	0.0005	0.0020
12	4	8	11	4	7	8891.0095	8891.0101	-0.0006	0.0020
13	4	9	12	4	8	9642.3441	9642.3438	0.0003	0.0020
14	4	10	13	4	9	10397.0214	10397.0209	0.0006	0.0020
15	4	11	14	4	10	11155.7415	11155.7408	0.0007	0.0020
9	1	9	8	1	8	6260.2807	6260.2814	-0.0007	0.0020
10	1	10	9	1	9	6943.4313	6943.4314	-0.0001	0.0020
11	1	11	10	1	10	7623.9624	7623.9617	0.0007	0.0020
12	1	12	11	1	11	8302.0973	8302.0975	-0.0002	0.0020
13	1	13	12	1	12	8978.1065	8978.1067	-0.0002	0.0020
14	1	14	13	1	13	9652.2789	9652.2775	0.0014	0.0020
15	1	15	14	1	14	10324.8975	10324.8984	-0.0009	0.0020
16	1	16	15	1	15	10996.2420	10996.2421	-0.0001	0.0020
17	1	17	16	1	16	11666.5547	11666.5555	-0.0008	0.0020
18	1	18	17	1	17	12336.0538	12336.0534	0.0004	0.0020
19	1	19	18	1	18	13004.9163	13004.9168	-0.0005	0.0020
20	1	20	19	1	19	13673.2951	13673.2942	0.0009	0.0020
10	2	9	9	2	8	7307.7402	7307.7398	0.0004	0.0020
11	2	10	10	2	9	8024.1543	8024.1549	-0.0006	0.0020
12	2	11	11	2	10	8736.7410	8736.7401	0.0009	0.0020
13	2	12	12	2	11	9445.3252	9445.3249	0.0003	0.0020
14	2	13	13	2	12	10149.8082	10149.8077	0.0005	0.0020
15	2	14	14	2	13	10850.1643	10850.1641	0.0002	0.0020
16	2	15	15	2	14	11546.4507	11546.4501	0.0006	0.0020
17	2	16	16	2	15	12238.8017	12238.8011	0.0007	0.0020
18	2	17	17	2	16	12927.4267	12927.4260	0.0008	0.0020
19	2	18	18	2	17	13612.5943	13612.5959	-0.0016	0.0020
11	3	9	10	3	8	8143.0194	8143.0190	0.0004	0.0020
12	3	10	11	3	9	8884.8903	8884.8898	0.0005	0.0020
13	3	11	12	3	10	9625.4159	9625.4154	0.0005	0.0020
14	3	12	13	3	11	10364.0326	10364.0332	-0.0006	0.0020
15	3	13	14	3	12	11100.1916	11100.1922	-0.0006	0.0020
11	4	8	10	4	7	8139.6191	8139.6191	0.0000	0.0020
12	4	9	11	4	8	8885.7609	8885.7620	-0.0011	0.0020
13	4	10	12	4	9	9633.1079	9633.1082	-0.0003	0.0020
14	4	11	13	4	10	10381.5237	10381.5235	0.0002	0.0020
15	4	12	14	4	11	11130.7959	11130.7961	-0.0002	0.0020
9	1	9	8	0	8	6926.2037	6926.2043	-0.0006	0.0020
10	1	10	9	0	9	7479.5585	7479.5592	-0.0007	0.0020
11	1	11	10	0	10	8046.5225	8046.5230	-0.0005	0.0020
12	1	12	11	0	11	8628.9592	8628.9586	0.0006	0.0020
13	1	13	12	0	12	9226.8747	9226.8745	0.0002	0.0020
14	1	14	13	0	13	9839.0118	9839.0096	0.0022	0.0020
15	1	15	14	0	14	10463.4306	10463.4299	0.0007	0.0020
16	1	16	15	0	15	11097.9970	11097.9963	0.0007	0.0020
17	1	17	16	0	16	11740.6607	11740.6630	-0.0023	0.0020
18	1	18	17	0	17	12389.6336	12389.6323	0.0013	0.0020
19	1	19	18	0	18	13043.4080	13043.4085	-0.0005	0.0020

		cis-a	cis-α-I	
n°	Atom	Charge	Charge	Variation / $\%$
				,
1	\mathbf{C}	-0.097	-0.103	-6
2	\mathbf{C}	-0.189	-0.181	4
3	\mathbf{C}	-0.243	-0.240	1
4	\mathbf{C}	-0.105	-0.101	4
5	\mathbf{C}	-0.146	-0.222	-52
6	\mathbf{C}	-0.218	-0.135	38
$\overline{7}$	\mathbf{C}	-0.201	-0.233	-16
8	\mathbf{C}	-0.164	-0.165	-1
9	\mathbf{C}	0.001	0.021	2000
10	\mathbf{C}	-0.103	-0.090	12
11	Η	0.230	0.229	0
12	Η	0.211	0.212	0
13	Η	0.215	0.206	-4
14	Η	0.199	0.211	6
15	Η	0.201	0.202	1
16	Η	0.217	0.219	1
17	Η	0.214	0.218	2
18	Η	0.108	0.137	26
19	Ο	-0.491	-0.523	-7
20	\mathbf{C}	0.361	0.359	0
21	Η	-	0.476	-
22	Ο	-	-0.959	-
23	Η	-	0.463	-

Table 11: Calculated natural charges of cis- α -naphthaldehyde and its hydrate cis- α -I, and the electronic charge variation

Variation stands for $\left(\frac{\text{charge in monomer-charge in hydrate}}{\text{charge in monomer}} \times 100\right)$

		$trans-\beta$	$trans-\beta$ -1	/ 0/
n°	Atom	Charge	Charge	Variation / %
1	\mathbf{C}	-0.100	-0.128	-29
2	\mathbf{C}	-0.122	-0.117	4
3	\mathbf{C}	-0.167	-0.222	-33
4	\mathbf{C}	-0.189	-0.185	2
5	\mathbf{C}	-0.131	-0.221	-69
6	\mathbf{C}	-0.236	-0.145	38
7	\mathbf{C}	-0.229	-0.252	-10
8	\mathbf{C}	-0.116	-0.149	-28
9	\mathbf{C}	-0.145	-0.012	92
10	\mathbf{C}	0.000	-0.005	-1141
11	Н	0.200	0.198	-1
12	Н	0.217	0.215	-1
13	Η	0.215	0.207	-4
14	Н	0.198	0.209	6
15	Н	0.207	0.214	4
16	Н	0.221	0.233	6
17	Н	0.195	0.195	0
18	Н	0.109	0.135	24
19	Ο	-0.483	-0.513	-6
20	С	0.356	0.361	1
21	Н	_	0.477	-
22	Ο	-	-0.960	-
23	Η	-	0.463	-

Table 12: Calculated natural charges of $trans-\beta$ -naphthaldehyde and its hydrate $trans-\beta$ -I, and the electronic charge variation

Variation stands for $\left(\frac{\text{charge in monomer-charge in hydrate}}{\text{charge in monomer}} \times 100\right)$

		$trans$ - β	$trans$ - β -II	
n°	Atom	Charge	Charge	Variation / $\%$
1	\mathbf{C}	-0.100	-0.138	-38
2	\mathbf{C}	-0.122	-0.118	3
3	\mathbf{C}	-0.167	-0.225	-35
4	\mathbf{C}	-0.189	-0.124	35
5	\mathbf{C}	-0.131	-0.221	-68
6	\mathbf{C}	-0.236	-0.150	36
7	\mathbf{C}	-0.229	-0.229	0
8	\mathbf{C}	-0.116	-0.208	-79
9	\mathbf{C}	-0.145	-0.029	80
10	\mathbf{C}	0.000	-0.013	-2936
11	Η	0.200	0.214	7
12	Η	0.217	0.216	-1
13	Η	0.215	0.203	-6
14	Η	0.198	0.215	8
15	Η	0.207	0.201	-3
16	Η	0.221	0.249	13
17	Η	0.195	0.198	2
18	Η	0.109	0.117	7
19	Ο	-0.483	-0.520	-8
20	\mathbf{C}	0.356	0.377	6
21	Η	-	0.484	-
22	Ο	-	-0.962	-
23	Η	-	0.465	-

Table 13: Calculated natural charges of $trans-\beta$ -naphthaldehyde and its hydrate $trans-\beta$ -II, and the electronic charge variation

Variation stands for $\left(\frac{\text{charge in monomer-charge in hydrate}}{\text{charge in monomer}} \times 100\right)$

Table 14: Structures	s, relative energies.	, rotational	constants and	dipole moment	components of	f the most st	ables d	ihydrates
for α -naphthaldehyd	de at MP2/aug-cc-	pVTZ leve	l of theory.					

species	cis - α -I-II	cis - α -II-III	$trans-\alpha$ -I-II	$trans-\alpha$ -II-III
1				
$\Delta E / kJ.mol^{-1}$	0.0	2.8	1.5	7.7
A / MHz	1136.2	869.4	935.0	1174.2
B / MHz	357.2	473.3	432.7	380.6
C / MHz	272.0	308.1	296.2	293.8
$\mu_a \ / \ { m D}$	-2.3	-3.2	-1.8	-2.7
$\mu_b \ / \ { m D}$	0.7	1.2	-0.1	-0.4
μ_c / D	0.3	-0.4	-0.2	0.6

Table 15: Structures, relative energies, rotational constants and dipole moment components of the most stables dihydrates for β -naphthaldehyde at MP2/aug-cc-pVTZ level of theory.

	,	•		
species	cis - β -I-II	cis - β -II-III	$trans$ - β -I-II	$trans$ - β -II-III
$\Delta E / kJ.mol^{-1}$	3.6	0.9	0.0	2.3
A / MHz	1763.1	835.0	1516.2	1208.4
B / MHz	256.6	456.7	269.2	327.3
C / MHz	224.2	296.1	228.8	257.9
μ_a / D	-3.5	-2.0	-3.6	3.4
μ_b / D	-0.3	-1.8	0.1	-1.5
μ_c / D	0.2	-0.2	0.2	0.0

