Supporting Information

Tunable Electrical Properties and Multiple-phases of Ferromagnetic GdS₂, GdSe₂ and Janus GdSSe Monolayers

Zhihao Gao,¹Yuehao Yin,² Yuwan Wang, ¹ Zichun Cui, ¹Tengfei Cao,¹Junqin Shi,¹ Xiaoli Fan ^{1*}

¹ State Key Laboratory of Solidification Processing, Center for Advanced Lubrication and Seal Materials, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China

²Queen Mary University of London Engineering School, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi 710072, China *Corresponding author: <u>xlfan@nwpu.edu.cn</u>

Figure S1. (a) Ferromagnetic (FM) and (b) antiferromagnetic (AFM) configurations of GdS₂, GdSe₂ and Janus GdSSe monolayers.

Figure S2. Calculated phonon spectrums of (a,d) GdS_2 , (b,e) $GdSe_2$ and (c,f) Janus GdSSe monolayers by adopting (a-c) $2 \times 2 \times 1$ and (d-f) $3 \times 3 \times 1$ supercells.

Figure S3. Calculated exfoliation energy of (a) GdS₂ and (b) GdSe₂ monolayers.

Figure S4. Spin-resolved charge density of (a) GdS_2 , (b) $GdSe_2$ and (c) Janus GdSSe monolayers in ferromagnetic (FM) configuration. The yellow color represents the spin-up charge. The isosurface value is set as 0.003 e Å⁻³.

Figure S5. The variation of magnetic moment of Gd atoms and the specific heat as a function of temperature for (a) GdS_2 , (b) $GdSe_2$ and (c) Janus GdSSe monolayers based on the Heisenberg model.

Figure S6. The band gaps of spin-up and spin-down channels of (a) GdS₂, (b) GdSe₂ and (c) Janus GdSSe monolayers under carrier doping from -0.3 to 0.3e *f.u.*⁻¹, and the exchange energy ($\Delta E_{AFM} - FM = E_{AFM} - E_{FM}$) of (d) GdS₂, (e) GdSe₂ and (f) Janus GdSSe monolayers. Positive/negative value means electron/hole doping.

Figure S7. Minimum energy path for the structural phase transitions between initial states (IS) and parastatic states (PS) of (a) GdS₂ and (b) GdSe₂ monolayers calculated by SSNEB method.

Table S1. The structural parameters (Å) of the initial state (IS) and paraelastic state (PS), energy barriers (meV/atom) and reversible ferroelastic strain during ferroelastic transformation of GdS_2 and $GdSe_2$ and GdSSe monolayers.

	Initi	ial state	Par	aelastic sta	ate En	ergy barrier	Strain
	a _{IS}	$b_{\rm IS}$	a _{PS} 1	$b_{\rm PS}$			
GdS ₂	7.15	4.13	5.13	5.13	66.2	73.2%	
GdSe ₂	7.40	4.27	5.33	5.33	60.8	73.2%	
GdSSe	7.27	4.20	5.29	5.29	62.3	73.2%	

Figure S8. (a) Ferromagnetic (FM), two antiferromagnetic (AFM) of (b) AFM1 and (c) AFM2, and (d) ferrimagnetic (FIM) configurations for the square lattices of GdS_2 and $GdSe_2$ and GdSse monolayers.

Figure S9. Spin-resolved charge density of the square lattices of the (a) GdS_2 , (b) $GdSe_2$ monolayers in ferromagnetic (FM) configuration. The yellow color represents the spin-up charge. The isosurface value is set as 0.003 e Å⁻³. Orbital-projected density of states of the square lattices of the (a) GdS_2 , (b) $GdSe_2$ monolayers.

Table S2. The energies for the ferromagnetic (FM), antiferromagnetic (AFMI and AFM2) and ferrimagnetic (FIM) configurations of the square lattices of the GdS_2 (P- GdS_2), $GdSe_2$ (P- $GdSe_2$) and GdSSe (P-GdSSe) monolayers. Magnetic anisotropic energies (MAE) of the P- GdS_2 , P- $GdSe_2$ and P-GdSSe monolayers calculated by the DFT+U (U_{eff} = 8 eV) method with considering spin orbit coupling (SOC). Negative value represents the easy magnetization axis along the in-plane direction.

	FM	AFM1	AFM2	2 FIM	MAE	
		(meV/C	Gd atom)	(µeV/Gd aton	n)
P-GdS ₂	0	111.4	109.2	5.1	-46.5	
P-GdSe ₂	0	53.3	53.3	11.2	-340.5	

Results of PBE+U method

Considering with the 4f orbitals of the Gd atoms, we adopted the PBE+U method. The related Hubbard on-site Coulomb parameter U of 9.2 eV and exchange interaction parameter J of 1.2 eV were chosen for U_{eff} (8 eV), which is defined as $U_{eff} = U$ -J. Previous results have shown that the calculated lattice constant (3.99 Å) of GdGe₂ monolayer at the U_{eff} value of 8 eV matches the experimental observation (4.01 Å) ¹; the rocksalt structure of bulk GdN calculated at the similar U_{eff} value match the experimental observation²; similarly U_{eff} value successfully reproduce the magnetic moment of Gd atom in bulk GdI₂.³ POSCAR files of the hexagonal honeycomb lattice of GdS₂, GdSe₂ and Janus GdSSe monolayers

GdS₂-POSCAR

1.0

	4.12	92424202	0.0000000000	0.0000000000
	-2.0646636004		3.5760219793	0.0000000000
	0.0000000000		0.0000000000	20.0000000000
	Gd	S		
	1	2		
Dir	·ect			
	0.66666	60482	0.333331327	0.499968290
	0.33332	29931	0.666662053	0.570505571
	0.33332	29513	0.666666587	0.429506111
Gd	Se ₂ -PO	SCAR		
1.0				
	4.27	36334801	0.0000000000	0.0000000000

	-2.136	58600116	3.7010738531	0.0000000000
	0.000	0000000	0.0000000000	20.000000000
	Gd	Se		
	1	2		
Dir	ect			
	0.666666	0522	0.333331253	0.499965620
	0.333329	9957	0.666662313	0.576242542

0.666666436

0.423771811

0.333329536

GdSSe-POSCAR

1.0

	4.198	955535	9	0.0000000000	0.0000000000
	-2.099	622374	2	3.6363808907	0.0000000000
	0.000	000000	0	0.0000000000	20.0000000000
C	Gd	S	Se		
	1	1	1		
Dire	ct				
0	.666656	5841	0.	.333332286	0.504613113
0	.333332	2132	0.	.666660704	0.570961428
0	.333330	959	0.	.666666933	0.424415493

POSCAR files of the square lattice of GdS₂, GdSe₂ and Janus GdSSe monolayers

GdS₂-POSCAR

1.0

5.	1326365471	0.0000000000	0.0000000000
0.	.0000000000	5.1326365471	0.0000000000
0.	.0000000000	0.0000000000	20.0000000000
Gd	S		
2	4		
Direct			
0.00	000000	0.000000000	0.492970984
0.500	000000	0.500000000	0.492970984
0.00	0000000	0.500000000	0.435988444
0.500	0000000	0.000000000	0.435988444
0.00	0000000	0.500000000	0.549960488
0.500	0000000	0.000000000	0.549960488

GdSe₂-POSCAR

1.0

5.3	323807716	0.0000000000	0.0000000000
0.0	000000000	5.3323807716	0.0000000000
0.0	000000000	0.0000000000	20.0000000000
Gd	Se		
2	4		

Direct

0.000000000	0.000000000	0.492969844
0.500000000	0.500000000	0.492969844
0.000000000	0.500000000	0.431552639
0.500000000	0.000000000	0.431552639
0.000000000	0.500000000	0.554397515
0.500000000	0.000000000	0.554397515

GdSSe-POSCAR

1	Ω	
T	.0	

5.2285308838			0.0000000000	0.0000000000
0.0000000000			5.2285308838	0.0000000000
0.0	0000000	000	0.0000000000	20.0000000000
Gd	Se	S		
2	2	2		

Direct

0.000000000	0.000000000	0.497041480
0.500000000	0.500000000	0.497041480
0.000000000	0.500000000	0.431907849
0.500000000	0.000000000	0.431907849
0.000000000	0.500000000	0.549970629
0.500000000	0.000000000	0.549970629

The Used software and input files of Monte Carlo simulations

Monte Carlo method⁴ based on the standard Metropolis-Hasting algorithm ⁵has been widely adopted to estimate the Curie temperature of FM materials. The software what we use for Monte Carlo simulation is MCSOLVER.⁶ In practice, the software divides the continue pare of Hamiltonian into twenty bins, each site thus can have at most twenty possible magnetic moments, and each site has its own energy according to the Hamiltonian. In one Monte Carlo step, the software first chose one site then decide which magnetic moment it would take, stochastically. Based on the energy variation, the software would accept or reject the operation with appropriate possibility and then repeat this operation for the next site until the magnetic moment of all sites in the supercell were taken. There is $32 \times 32 \times 1$ supercell in our simulations, using $> 10^8$ sweeps (> 10^{14} Monte Carlo steps) to get converged results. Below are the input files for our Monte Carlo simulations of GdS₂, GdSe₂ and Janus GdSSe monolayers with hexagonal honeycomb lattices.

The input files of GdS₂ monolayer

```
This is mcsolver's save file, version: 2.3
Lattice:
1.00000000 0.00000000 0.00000000
-0.50000000 0.866000000 0.00000000
0.00000000 0.00000000 1.00000000
Supercell used in MC simulations:
32 32 1
Orbitals in cell:
1
Positions, initial spin states and onsite-anisotropy of every orbital:
orb 0: type 0 spin 4.00000000 pos [0.666670000 0.333330000 0.50000000] Dx
0.000000000 Dy 0.00000000 Dz 1.553000000 h 0.00000000
Bonds:
```

```
4
```

id, source, target, overLat, exchange matrix elements of each bond:

bond 0: Jx -1.726700000 Jy -1.726700000 Jz -1.726700000 Jxy 0.0000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [1 0 0]

bond 1: Jx -1.726700000 Jy -1.726700000 Jz -1.726700000 Jxy 0.0000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [1 1 0]

bond 2: Jx -1.726700000 Jy -1.726700000 Jz -1.726700000 Jxy 0.0000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [0 1 0]

bond 3: Jx -1.726700000 Jy -1.726700000 Jz -1.726700000 Jxy 0.0000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [0 0 0]

Temperature scanning region:

Tmin 10.00000000 Tmax 100.00000000 nT 50

Field scanning region:

Hmin 0.000000000 Hmax 0.100000000 nH 1

Dipole long-range coupling:

alpha 0.000000

Measurement:

measure the correlation function between orb0 and orb0 over $\begin{bmatrix} 0 & 0 \end{bmatrix}$

Supergroup

OrbGroup:1

Supergroup

group0 orb0-orb0

Distribution output frame: 0

Sweeps for thermalization and statistics, and relaxiation step for each sweep:

80000 640000 0

XAxis type:

Т

Model type: Heisenberg Algorithm: Metropolis Ncores: 3

The input files of GdSe₂ monolayer

This is mcsolver's save file, version: 2.3

Lattice:

 $1.00000000\ 0.0000000\ 0.00000000$

 $-0.50000000\ 0.86600000\ 0.00000000$

 $0.00000000 \ 0.00000000 \ 1.00000000$

Supercell used in MC simulations:

32 32 1

Orbitals in cell:

1

Positions, initial spin states and onsite-anisotropy of every orbital:

orb 0: type 0 spin 4.00000000 pos [0.666670000 0.333330000 0.50000000] Dx 0.00000000 Dy 0.00000000 Dz 12.500000000 h 0.000000000

Bonds:

4

id, source, target, overLat, exchange matrix elements of each bond:

bond 0: Jx -2.028000000 Jy -2.028000000 Jz -2.028000000 Jxy 0.0000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [0 0 0]

bond 1: Jx -2.028000000 Jy -2.028000000 Jz -2.028000000 Jxy 0.000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [1 0 0]

bond 2: Jx -2.028000000 Jy -2.028000000 Jz -2.028000000 Jxy 0.000000000 Jxz

0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [0 1 0]

bond 3: Jx -2.028000000 Jy -2.028000000 Jz -2.028000000 Jxy 0.0000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [0 0 0]

Temperature scanning region:

Tmin 10.00000000 Tmax 100.00000000 nT 50

Field scanning region:

Hmin 0.000000000 Hmax 0.100000000 nH 1

Dipole long-range coupling:

alpha 0.000000

Measurement:

measure the correlation function between orb0 and orb0 over [0 0 0]

Supergroup

OrbGroup:1

Supergroup

group0 orb0-orb0

Distribution output frame: 0

Sweeps for thermalization and statistics, and relaxiation step for each sweep:

80000 640000 0

XAxis type:

Т

Model type:

Heisenberg

Algorithm:

Metropolis

Ncores:

3

The input files of Janus GdSSe monolayer

This is mcsolver's save file, version: 2.3

Lattice:

 $1.00000000\ 0.0000000\ 0.00000000$

-0.50000000 0.866000000 0.000000000

 $0.00000000 \ 0.00000000 \ 1.00000000$

Supercell used in MC simulations:

32 32 1

```
Orbitals in cell:
```

1

Positions, initial spin states and onsite-anisotropy of every orbital:

orb 0: type 0 spin 4.000000000 pos [0.666670000 0.333330000 0.500000000] Dx

```
0.000000000 Dy 0.00000000 Dz 7.470000000 h 0.000000000
```

Bonds:

4

id, source, target, overLat, exchange matrix elements of each bond:

bond 0: Jx -2.028000000 Jy -2.028000000 Jz -2.028000000 Jxy 0.0000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [0 0 0]

bond 1: Jx -2.039620000 Jy -2.039620000 Jz -2.039620000 Jxy 0.000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [0 1 0]

bond 2: Jx -2.039620000 Jy -2.039620000 Jz -2.039620000 Jxy 0.000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [1 1 0]

bond 3: Jx -2.039620000 Jy -2.039620000 Jz -2.039620000 Jxy 0.000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [1 0 0]

Temperature scanning region:

Tmin 10.00000000 Tmax 100.00000000 nT 50

Field scanning region:

Hmin 0.000000000 Hmax 0.100000000 nH 1

Dipole long-range coupling:

alpha 0.000000

Measurement:

measure the correlation function between orb0 and orb0 over [0 0 0]

Supergroup

OrbGroup:1

Supergroup

group0 orb0-orb0

Distribution output frame: 0

Sweeps for thermalization and statistics, and relaxiation step for each sweep:

80000 640000 0

XAxis type:

Т

Model type:

Heisenberg

Algorithm:

Metropolis

Ncores:

3

References

- 1. Y. Wang, Z. Cui, H. Zeng, Z. Wang, X. Zhang, J. Shi, T. Cao and X. Fan, *J. Mater. Chemi. C*, 2022, **10**, 1259-1269.
- 2. P. Larson, W. R. L. Lambrecht, A. Chantis and M. van Schilfgaarde, *Phys. Rev. B*, 2007, **75**, 045144.
- B. Wang, X. Zhang, Y. Zhang, S. Yuan, Y. Guo, S. Dong and J. Wang, *Mater. Horiz.*, 2020, 7, 1623-1630.
- 4. N. Metropolis and S. Ulam, J. Am. Stat. Assoc., 1949, 44, 335-341.
- 5. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, *J.Chem. Phys.*, 1953, **21**, 1087-1092.
- 6. L. Liu, X. Ren, J. Xie, B. Cheng, W. Liu, T. An, H. Qin and J. Hu, *Appl. Surf. Sci.*, 2019, **480**, 300-307.