Supporting information

Insight into swift heavy ion radiation response of Y₃Al₅O₁₂ and Nd³⁺- Y₃Al₅O₁₂: Structural damage and defect dynamics

Koushik Bhandari,^{a,f} V. Grover,*^{b,f} P. Kalita,^c K. Sudarshan,^{d,f} B. Modak,^{b,f} Saurabh K Sharma,^e P. K. Kulriya^e

^aRadiometallurgy Division, Bhabha Atomic Research Centre, Mumbai- 400085, India
^bChemistry Division, Bhabha Atomic Research Centre, Mumbai- 400085, India
^cSchool of Engineering, University of Petroleum & Energy Studies, Dehradun- 248007, India
^dRadiochemistry Division, Bhabha Atomic Research Centre, Mumbai- 400085, India
^e School of Physical Sciences, Jawahar Lal Nehru University, New Delhi- 110067, India
^fHomi Bhabha National Institute, Mumbai- 400094, India

Fig. S1: Depth profile of electronic stopping power (S_e), nuclear stopping powers (S_n) of 100 MeV I ions in $Y_3Al_5O_{12}$ and $Y_{2.6}Nd_{0.4}Al_5O_{12}$.

Fig. S2: Broad hump at $\sim 2\theta = 20^{0}-40^{0}$ for (a) $Y_{3}Al_{5}O_{12}$ and (b) $Y_{2.6}Nd_{0.4}Al_{5}O_{12}$ indicates coexistence amorphous phase with crystalline phase after irradiation.

Fig. S3: LeBail refinement plot of $Y_3Al_5O_{12}$ at (a) pristine condition and (b) after irradiated at a fluence of 3×10^{13} ions/cm². The vertical lines indicate Bragg positions for cubic garnet.

Fig. S4: LeBail refinement plot of $Y_{2.6}Nd_{0.4}Al_5O_{12}$ at (a) pristine condition and (b) after irradiated at a fluence of 1×10^{13} ions/cm². The vertical lines indicate Bragg positions for cubic garnet.

Fig. S5: Representative fitted Raman modes of Nd-YAG at (a) pristine condition and (b) after irradiated at a fluence of 1×10^{13} ions/cm².

Fig. S6. PALS spectra of (a) YAG and (b) Nd-YAG at pristine and irradiated (at 3.3×10^{13} ions/ cm²) condition.

Fig. S7: Crystal structure for $Y_3Al_5O_{12}$. Blue polyhendra indicates AlO_4 and AlO_6 units, while pink polyhendra indicates YO_8 unit.

Table S1: Elemental analysis results of $Y_3Al_5O_{12}$ and $Y_{2.6}Nd_{0.4}Al_5O_{12}$.

Nominal Composition	Y (atom%)	Nd (atom%)	Al (atom%)
	Determined	Determined	Determined
	(Expected)	(Expected)	(Expected)
Y ₃ Al ₅ O ₁₂	38	-	62
	(37.5)		(62.5)
Y _{2.6} Nd _{0.4} Al ₅ O ₁₂	35	5	60
	(32.5)	(5)	(62.5)

Table S2: Comparison of Raman frequencies of select modes in unirradiated sample andsample irradiated at $1x \ 10^{13} \text{ ions/cm}^2$

Raman Mode for unirradiated sample		Raman Mode for irradiated sample at a fluence of 1 x 10 ¹³ ions/cm ²			
Wavenumber	FWHM	2σ	Wavenumber	FWHM	2σ
(cm ⁻¹)	(cm ⁻¹)		(cm ⁻¹)	(cm ⁻¹)	
164.1	10.6	0.3	165.5	7.1	0.6
264.3	9.4	0.2	265.8	11.5	0.3
374.2	9.9	0.2	375.2	11.0	0.4
405.6	9.4	0.2	406.5	11.6	0.2
782.7	12.3	0.4	784.2	17.3	1.2

 σ : standard deviation

 Table S3: Measured values of thermal conductivity for YAG and Nd-YAG.

Temperature	Thermal Conductivity (Wm ⁻¹ K ⁻¹)			
(K)	YAG	Nd-YAG		
300	7.377	5.081		
373	6.054 4.174			
473	5.406	3.796		
573	4.95	3.432		
673	4.602	3.23		
773	4.296	3.131		
873	4.109	3.086		
973	3.845 3.005			
1073	3.683 2.865			