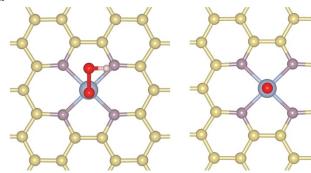
Supporting information

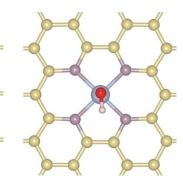
Construction of Highly Active FeN₄@Fe_x(OH)_x (x=0, 4, 8, 12) Clusters Composite Sites for Oxygen Reduction Reaction and Oxygen Evolution Reaction

Yulin Zhang¹; Xihao Chen²; Siyu Gan⁵; Yu Hu^{3,4}; Yi Tian¹; Shiyu Wang¹; Long Chen¹ ; Junping Xiao^{6,*} and Ning Wang^{5,*}

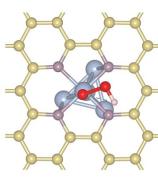
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China.
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong, Sichuan 643000, China.
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, Sichuan, China
- College of Physics and Electronic Information, Baicheng Normal University, Baicheng, Jilin 137000, China

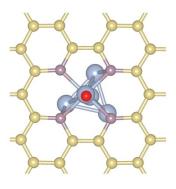
*Correspondence: <u>djtc999@163.com</u> (Junping Xiao); <u>ningwang0213@163.com</u> (Ning Wang)

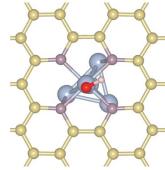

Computational details

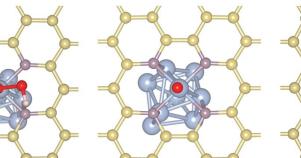

For FeN₄@Fe₄, FeN₄@Fe₈, and FeN₄@Fe₁₂, we calculate how much OH species needs to be adsorbed on the Fe_x cluster before it can be adsorbed on the FeN₄ site. The calculation steps are as 1) The adsorption strength of one OH at various sites (including FeN₄ and Fe atoms of the Fe_x cluster) is calculated, and the strongest adsorption site is obtained; 2) Based on the first step, the adsorption strength of the second OH on the other sites is calculated to determine the strongest site; 3) The results indicate that the OH can only start to absorb on the FeN₄ site after there is full OH absorbed on the Fe_x cluster.

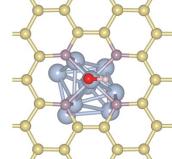
The solvation effect by water on ORR/OER activity is calculated using DFT calculations as an implemented implicit method in VASPsol. The adsorption energy in the water solvent environment is calculated as:


$$E_{\text{ads-solv}} = E_{\text{a}} + (E_{\text{solvent}} - E_{\text{vac}})$$


where E_a is the adsorption energy in the vacuum, $E_{solvent}$ is the total energy of adsorbate on the catalyst by an implicit solvent model, and E_{vac} is the total energy of adsorbate on the catalyst under a vacuum environment.




b



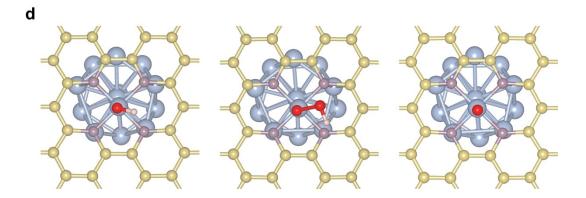
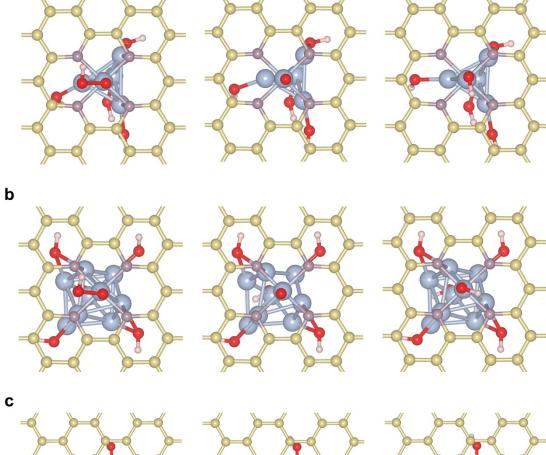



Fig. S1. The optimized structures of reaction intermediates adsorbed on (a) FeN₄, (b) $FeN_4@Fe_4$, (c) $FeN_4@Fe_8$, and (d) $FeN_4@Fe_{12}$, respectively.

а

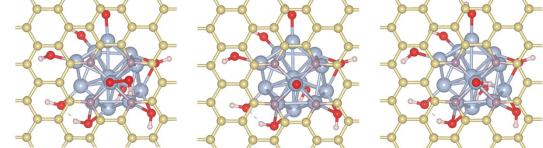


Fig. S2. The optimized structures of reaction intermediates adsorbed on (a) $FeN_4@Fe_4(OH)_4$, (b) $FeN_4@Fe_8(OH)_6$, and (c) $FeN_4@Fe_{12}(OH)_8$, respectively.