Supplementary Information

Investigation of Pb–B Bonding in PbB₂(BO)_n⁻ (n = 0-2): Transformation from an Aromatic PbB₂⁻ to Pb[B₂(BO)₂]^{-/0} Complexes with a B=B Triple Bond

Qiang Chen,^{a,c,†} Wei-Jia Chen,^{b,†} Xin-Yao Wu,^{a,†} Teng-Teng Chen,^{b,e} Rui-Nan Yuan,^a Hai-Gang Lu,^{a,c} Dao-Fu Yuan,^{*b,d} Si-Dian Li,^{*a,c} and Lai-Sheng Wang^{*b}

^a Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, People's Republic of China. Email: chenqiang@sxu.edu.cn, lisidian@sxu.edu.cn ^b Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA. Email: ydfu@ustc.edu.cn, laisheng wang@brown.edu

^c Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China

^d Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

^c Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Hong Kong SAR, China

[†] These authors contributed equally to this work.

Fig. S1. Low-lying isomers of PbB_2^- , along with their relative energies indicated in eV at PBE0/AVTZ and CCSD(T)/AVTZ (in italic) levels, respectively.

Fig. S2. Low-lying isomers of PbB₃O⁻, along with their relative energies indicated in eV at PBE0/AVTZ and CCSD(T)/AVTZ (in italic) levels, respectively.

Fig. S3. Low-lying isomers of PbB₄O₂⁻, along with their relative energies indicated in eV at PBE0/AVTZ and CCSD(T)/AVTZ (in italic) levels, respectively.

Fig. S4. Occupied valence molecular orbitals for the global minima of (a) $C_{2\nu}$ PbB₂⁻ (1), (b) C_s PbB₃O⁻ (2), and (c) $C_{2\nu}$ PbB₄O₂⁻ (3).

Fig. S5. Comparison between the photoelectron spectrum with the computed VDEs of $PbB_4O_2^-$ at 266 nm. The vertical bars correspond to computed VDEs using the CCSD(T) method. The longer and shorter bars correspond to transitions to triplet and singlet final states, respectively.

Fig. S6. The strength and direction of the induced current for (a) $C_{2\nu} PbB_2^{-}$ (1) at the molecular plane, and for (b) C_s PbB_3O^{-} (2) at 1.5 a_0 above the molecular plane, and for (c) $C_{2\nu} PbB_4O_2^{-}$ (3) at 1.5 a_0 above the molecular plane, and for (d) $C_{2\nu} PbB_4O_2$ (3') at 1.5 a_0 above the molecular plane calculated by the GIMIC program. The magnetic field is pointing out of the molecule plane.

Feature	VDE ^a	Configurations	Terms -	VDE (theo.)	
	(exp)			PBE0 ^b	CCSD(T) ^c
х	2.88				
X'	3.13	$\dots 1b_1^2 1a_2^2 4b_2^2 6a_1^2 7a_1^2 2b_1^2 \textbf{5b_2^0}$	¹ A ₁	3.29	3.16
A'	3.40	$\dots 1b_1^2 1a_2^2 4b_2^2 6a_1^2 7a_1^2 2b_1^1 5b_2^1$	³ A ₂	3.40	3.45
А	3.82	$\dots 1b_1^2 1a_2^2 4b_2^2 6a_1^2 7a_1^2 2b_1^1 5b_2^1$	¹ A ₂	3.84	3.71
В	4.01				
С	4.15				
D	4.33				
Е	4.53	$\dots 1b_1^2 1a_2^2 4b_2^2 6a_1^2 \textbf{7a_1}^1 2b_1^2 5b_2^1$	³ B1	4.47	4.52

Table S1. The experimental vertical detachment energies (VDEs) for $PbB_4O_2^-$ in comparison with theoretical VDEs for Y-shaped $PbB_4O_2^-$ at PBE0/AVTZ and CCSD(T)/AVTZ levels. All energies are given in eV.

 $^{\it a}$ The experimental uncertainty was estimated to be ± 0.02 eV.

 $^{\it b}$ The VDEs calculated using the TD-PBE0/AVTZ method.

^c The first two VDEs were calculated using the CCSD(T)/AVTZ method, while the higher VDEs were calculated using the TD-PBE0/AVTZ method.

Table S2. Coordinates for optimized $C_{2\nu}$ PbB₂⁻ (1), C_s PbB₃O⁻ (2), and $C_{2\nu}$ PbB₄O₂^{-/0} (3 and 3'), and $C_{2\nu}$ PbB₄O₂^{-/2-} (4 and 4') at PBE0/AVTZ level.

$C_{2v}\operatorname{PbB}_{2^{-}}(1)$				
Pb	0.23453000	0.00000000	0.00000000	
В	-1.92314600	0.77147600	0.00000000	
В	-1.92314600	-0.77147600	0.00000000	
	-1.34797311	0.00000000	0.00000000	
	(Centre of current at the molecular plane, Fig. S6a			

 $C_{s} PbB_{3}O^{-}(2)$

Pb	0.00000000	0.71644400	0.00000000	
В	0.64172300	-1.77066000	0.00000000	
В	-0.39546500	-3.01579200	0.00000000	
В	1.65481400	-0.65065700	0.00000000	
0	-1.18817000	-3.94535300	0.00000000	
	0.57158000	-1.04077600	0.00000000	
	(Centre of curre	nt at 1.5 a ₀ above	the molecular plane, F	ig. S6b)

 $C_{2\nu} \text{ PbB}_{4}\text{O}_{2}^{-}$ (3)

Pb	0.71202200	0.00000000	0.00000000	
В	-1.61705200	2.36064400	0.00000000	
В	-1.57021300	-0.74970700	0.00000000	
В	-1.61705200	-2.36064400	0.00000000	
В	-1.57021300	0.74970700	0.00000000	
0	-1.65707100	-3.58175500	0.00000000	
0	-1.65707100	3.58175500	0.00000000	
	-0.89314529	0.00000000	0.00000000	

(Centre of current at 1.5 a₀ above the molecular plane, Fig. S6c)

$C_{2\nu} \text{PbB}_{4}\text{O}_{2}$ (3')

Pb	0.53610400	0.00000000	0.00000000	
В	-1.34307400	2.29677300	0.00000000	
В	-1.77506000	-0.73903100	0.00000000	
В	-1.34307400	-2.29677300	0.00000000	
В	-1.77506000	0.73903100	0.00000000	
0	-0.79870000	-3.37985600	0.00000000	
0	-0.79870000	3.37985600	0.00000000	
	-1.44100246	0.00000000	0.00000000	

(Centre of current at 1.5 a_0 above the molecular plane, Fig. S6d)

$C_{2\nu} \text{PbB}_{4}\text{O}_{2}^{-}(4)$

Pb	0.00000000	0.00000000	1.33048900
В	0.00000000	0.00000000	-0.88573600
В	0.00000000	1.44352800	-3.21600000
В	0.00000000	0.00000000	-2.44570400
В	0.00000000	-1.44352800	-3.21600000
0	0.00000000	2.53020100	-3.76767900
0	0.00000000	-2.53020100	-3.76767900

$C_{2\nu} \text{PbB}_{4}\text{O}_{2^{2-}}(4')$

Pb	0.00000000	0.00000000	1.35287200
В	0.00000000	0.00000000	-0.85549600
В	0.00000000	1.41641300	-3.24880500
В	0.00000000	0.00000000	-2.43344700
В	0.00000000	-1.41641300	-3.24880500
0	0.00000000	2.47448000	-3.87517100
0	0.00000000	-2.47448000	-3.87517100

	$C_{2\nu} \operatorname{PbB_2^-}$	Cs PbB ₃ O ⁻	$C_{2\nu} \operatorname{PbB4O2^-}$	C _{2v} PbB ₄ O ₂	$C_{2\nu} \operatorname{PbB_4O_2^-}$	$C_{2\nu} \operatorname{PbB_4O_2^{2-}}$
	(1)	(2)	(3)	(3 ′)	(4)	(4')
Pb–B	1.04	1.55/0.63	0.78	0.63	1.72	2.08
B–B	1.68	1.78	1.76	1.84	1.59	1.69

Table S3. Natural resonance theory (NRT) bond orders for the Pb–B and B–B bonds in $C_{2\nu}$ PbB₂⁻ (1), C_s PbB₃O⁻ (2), $C_{2\nu}$ PbB₄O₂^{-/0} (3 and 3'), and $C_{2\nu}$ PbB₄O₂^{-/2-} (4 and 4') at PBE0/AVTZ level.