# Photophysical investigation into room-temperature emission from xanthene derivatives

Kristen Harrington<sup>a</sup> David T. Hogan,<sup>b</sup> Todd C. Sutherland<sup>b\*</sup> and Kevin Stamplecoskie<sup>a\*</sup>

Table of Contents:

| Xanthene (1) synthesis                                                                                                                       | 3 |
|----------------------------------------------------------------------------------------------------------------------------------------------|---|
| Thioxanthene (2) synthesis                                                                                                                   | 4 |
| Thioxanthene Sulfoxide (3) synthesis                                                                                                         | 4 |
| Thioxanthene Sulfone (4) synthesis                                                                                                           | 5 |
| <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> , 298 K) for thioxanthene sulfoxide                                                           | 5 |
| DEPT-Q <sup>13</sup> C{ <sup>1</sup> H} NMR (100 MHz, CDCl <sub>3</sub> , 298 K) for thioxanthene sulfoxide                                  | 5 |
| High-resolution mass spectrum (EI+) for thioxanthene sulfoxide                                                                               | 7 |
| Elemental analysis for recrystallized xanthene                                                                                               | 7 |
| Elemental analysis for recrystallized thioxanthene                                                                                           | 7 |
| Elemental analysis for recrystallized thioxanthene sulfoxide                                                                                 | 7 |
| Elemental analysis for recrystallized thioxanthene sulfone                                                                                   | 8 |
| Gas Chromatograms of 1 -4                                                                                                                    | 8 |
| Crystallographic Packing diagrams of 1 - 4.                                                                                                  | 9 |
| Solution (10 <sup>-5</sup> M, ACN) absorbance, emission, and excitation spectra                                                              | 1 |
| Solution (5-50 mM, ACN) absorbance spectra12                                                                                                 | 2 |
| Emission and Excitation spectra of 1 – 4 (50 mM, ACN)14                                                                                      | 4 |
| Solution (50 mM, ACN) variable temperature absorbance spectra of 1 - 41                                                                      | 5 |
| Emission lifetimes of solutions (50 mM, ACN) of 1 – 4                                                                                        | 5 |
| DFT calculated excited-state structure changes for 1 – 4                                                                                     | 6 |
| Computationally determined relevant $S_n$ and $T_n$ energies, and selected SOC constants for $1 - 4$ in optimised $S_1$ geometries.          | 7 |
| Computationally determined $S_n$ and $T_n$ energies (eV) at optimised $S_1$ geometries for 1 - 41                                            | 7 |
| Computationally determined SOC constants (cm <sup>-1</sup> ) for singlet and triplet states in optimised S <sub>1</sub> geometries for 1 – 4 | 8 |
| Computationally determined S <sub>n</sub> and T <sub>n</sub> energies (eV) at optimised S <sub>0</sub> geometries for 1 - 4                  | 9 |

| Computationally determined SOC constants (cm <sup>-1</sup> ) for singlet and triplet states in optimised S <sub>0</sub> geometries for | r 1 – |
|----------------------------------------------------------------------------------------------------------------------------------------|-------|
| 4                                                                                                                                      | 19    |
| Excitation and emission spectra of crystalline samples of 1 – 4 (200 $\mu$ s delay)                                                    | 20    |
| Variable Temperature Emission of Crystalline Samples of 1 – 4 (200 $\mu$ s delay)                                                      | 21    |
| Emission lifetimes of crystalline solids 1 – 4 (200 $\mu$ s delay)                                                                     | 22    |
| Emission of Crystalline Samples under either air or N $_2$ atmosphere (200 $\mu$ s delay)                                              | 23    |
| Steady-state fluorescence of crystalline samples of 1, 2, and 4                                                                        | 23    |
| Emission lifetimes of crystalline solids 1 – 4 (prompt).                                                                               | 24    |
| Irradiance power (transmittance) versus emission intensity of crystalline solids 1 – 4                                                 | 25    |
| Natural Transition orbitals (NTOs) of 1 - 4                                                                                            | 26    |
| DFT Computations Orca 5.0.3, PBE0 D4 def2-TZVP – Ground states (S <sub>0</sub> ) of 1 – 4                                              | 26    |
| DFT Computations Orca 5.0.3, PBE0 D4 def2-TZVP – $S_1$ of 1 – 4                                                                        | 28    |
| DFT Computations Orca 5.0.3, UHF def2-SVP – $T_1$ of 1 – 4.                                                                            | 30    |
| References                                                                                                                             | 32    |

#### Journal Name

ARTICLE

#### Xanthene (1) synthesis





This experimental was adapted from a literature procedure.<sup>1</sup> An oven-dried 100 mL RBF with an oven-dried magnetic stirbar was cooled to room temperature under a stream of N<sub>2</sub>. Xanthone (2.0300 g, 1.0355×10<sup>-2</sup> mol, 1.0 eq) and THF (60 mL) were added to the flask, it was stoppered with a rubber septum and the headspace was flushed with N<sub>2</sub>. BH<sub>3</sub>·SMe<sub>2</sub> (2 M in THF, 7.8 mL, 1.56×10<sup>-2</sup> mol, 1.5 eq) was added in one portion by syringe and the flask neck was equipped with a pre N<sub>2</sub>-flushed water condenser. The flask was put into a 75-80 °C oil bath, stirred and refluxed for 1 hour under N<sub>2</sub>, acquiring fluffy white precipitate as time passed. The mixture was allowed to cool to room temperature, then further to 0 °C in an ice-water bath. Slowly with manual swirling excess borane was quenched with brine (9 mL, added 1 mL at a time) and 1 M HCl (12 mL, added 1 mL at a time). Swirling was continued until the solution was no longer effervescent, then it was diluted with EtOAc (12 mL) and water (12 mL) and the layers were shaken then separated in a separatory funnel. The aqueous layer was extracted with EtOAc (3×12 mL), all combined organics were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressures into a white solid. This was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and adsorbed to silica, loaded onto a 3 cm wide × 5 cm tall silica column packed in hexanes. This solvent (~350 mL) was used to first elute remaining SMe<sub>2</sub>, then all following eluate that contained shortwave UV-active fractions (visualized on TLC plates) was collected and concentrated under reduced pressures to yield xanthene (1.6630 g, 88%) as white hairy microcrystals: spectroscopic characterization was in accord with existing literature data;<sup>2</sup> m.p. (methanol) 102-103 °C (lit.<sup>3</sup> 100.5 °C from ethanol; Anal. Calcd. for C<sub>13</sub>H<sub>10</sub>O: C 85.69, H 5.53, Found C 85.38, H 5.61. For analysis, the solid was recrystallized from minimal boiling methanol. Colourless square plates were collected after allowing the supernatant solution to come to room temperature and sit un-agitated for 2-3 hours, then by chilling in an ice-water bath for 4-6 hours.

#### Thioxanthene (2) synthesis





This experimental was adapted from a literature procedure.<sup>1</sup> An oven-dried 100 mL RBF with an oven-dried magnetic stirbar was cooled to room temperature under a stream of N<sub>2</sub>. Thioxanthone (2.0412 g, 9.6269×10<sup>-3</sup> mol, 1.0 eq) and THF (60 mL) were added to the flask, it was stoppered with a rubber septum and the headspace was flushed with N<sub>2</sub>. BH<sub>3</sub>·SMe<sub>2</sub> (2 M in THF, 7.0 mL,  $1.4 \times 10^{-2}$  mol, 1.5 eq) was added in one portion by syringe and the flask neck was equipped with a pre N<sub>2</sub>-flushed water condenser. The flask was put into a 75-80 °C oil bath, stirred and refluxed for 1 hour under N<sub>2</sub>, acquiring fluffy brown precipitate as time passed. The mixture was allowed to cool to room temperature, then further to 0 °C in an ice-water bath. Slowly with manual swirling excess borane was quenched with brine (9 mL, added 1 mL at a time) and 1 M HCl (12 mL, added 1 mL at a time). Swirling was continued until the solution was no longer effervescent, then it was diluted with EtOAc (12 mL) and water (12 mL) and the layers were shaken then separated in a separatory funnel. The aqueous layer was extracted with EtOAc (3×12 mL), all combined organics were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressures into a beige solid. This was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and adsorbed to silica, loaded onto a 3 cm wide × 5 cm tall silica column packed in hexanes. This solvent (~500 mL) was used to first elute remaining SMe<sub>2</sub>, then all following eluate that contained shortwave UV-active fractions (visualized on TLC plates) was collected and concentrated under reduced pressures to yield thioxanthene (1.6651 g, 87%) as fine white microneedles: spectroscopic characterization was in accord with existing literature data;<sup>4</sup> m.p. (methanol) 130-132 °C (lit.<sup>5</sup> 130-131 °C from methanol); Anal. Calcd. for C<sub>13</sub>H<sub>10</sub>S: C 78.75, H 5.08, S 16.17, Found C 78.84, H 5.13, S 16.17. For analysis, the solid was recrystallized from minimal boiling methanol. Colourless long needles were collected after allowing the supernatant solution to come to room temperature and sit un-agitated for 2-3 hours, then by chilling in an ice-water bath for 4-6 hours.

# Thioxanthene Sulfoxide (3) synthesis



Into a 250 mL Schlenk flask were added a magnetic stirbar and thioxanthene (1.0019 g,  $5.053 \times 10^{-3}$  mol, 1 eq) which was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (80 mL) with stirring. The sidearm was opened and the solution was chilled in an ice-water bath. Separately, a solution of *m*-CPBA (0.4366 g, 2.530×10<sup>-3</sup> mol, 0.5 eq) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL) was prepared with sonication, which was transferred with washing (2 mL CH<sub>2</sub>Cl<sub>2</sub>) into an addition funnel equipped to the flask neck. This solution was added over 20 mins to the

#### Journal Name

chilled and stirring thioxanthene solution, using CH<sub>2</sub>Cl<sub>2</sub> (5 mL) to wash the addition funnel of any remaining *m*-CPBA. The reaction solution was stirred for a further 3 hours at 0 °C. After this time, the mixture was allowed to warm to room temperature and it was vigorously shaken with 1M NaOH (40 mL) in a separatory funnel. The layers were separated and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3×10 mL). The combined organics were brine washed, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressures into a white solid. This was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, adsorbed to silica and loaded onto a 5 cm tall × 4 cm wide silica column packed in hexanes. This solvent (~300 mL) eluted unreacted thioxanthene, which can be recovered and reused in subsequent sulfoxidations. The solvent was switched to 20% EtOAc/hexanes (~600 mL), the last ~300 mL of which contained a shortwave UV-active component on TLC plates, which was collected and concentrated to yield thioxanthene sulfoxide (0.4449 g, 38% yield, 82% brsm) as a white solid: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 7.5 Hz, 2H), 7.56 – 7.37 (m, 6H), 4.20 (d, *J* = 16.7 Hz, 1H), 3.83 (d, *J* = 16.7 Hz, 1H); DEPT-Q <sup>13</sup>C[<sup>1</sup>H] NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  142.0, 133.0, 130.3, 128.3, 127.6, 124.7, 35.9; HRMS (EI, positive) calculated for [M]<sup>+</sup> [C<sub>13</sub>H<sub>10</sub>SO]<sup>+</sup> *m/z* = 214.0452, found *m/z* = 214.0447, -2.3 ppm difference; m.p. (methanol/ether) 118-120.5 °C (lit.<sup>6</sup> 116-118 °C from hexanes/CH<sub>2</sub>Cl<sub>2</sub>); *Anal. Calcd.* for C<sub>13</sub>H<sub>10</sub>SO: C 72.87, H 4.70, S 14.96, Found C 73.15, H 4.74, S 15.05. For analysis, the solid was recrystallized from minimal boiling 50/50 methanol/diethyl ether. Colourless microcrystalline lumps were collected after allowing the supernatant solution to come to room temperature and sit un-agitated for 2-3 hours, then by chilling in an ice-water bath for 4-6 hours.

#### **Thioxanthene Sulfone (4) synthesis**



Into a 250 mL RBF were added a magnetic stirbar and thioxanthene (1.0093 g,  $5.0903 \times 10^{-3} \text{ mol}$ , 1.0 eq), which was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (15 mL), with stirring. Separately, a solution of *m*-CPBA (2.6349 g,  $1.5269 \times 10^{-2} \text{ mol}$ , 3.0 eq) in CH<sub>2</sub>Cl<sub>2</sub> was prepared with sonication, and this was added in one portion to the stirring thioxanthene solution. After 1 hour stirring at room temperature the clear and colourless solution had become turbid with white precipitates. The mixture as diluted with CH<sub>2</sub>Cl<sub>2</sub> (~120 mL) to dissolve all solids, and the solution was vigorously shaken with 1 M NaOH ( $3 \times 15 \text{ mL}$ ) to quench remaining acids. The aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> ( $3 \times 10 \text{ mL}$ ), all combined organics were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressures to yield thioxanthene-10,10-dioxide (1.1199 g, 95%) as a white amorphous solid: spectroscopic characterization was in accord with existing literature data;<sup>7</sup> m.p. (methanol) 174-176.5 °C (lit.<sup>8</sup> 174-177.5 °C from methanol); *Anal. Calcd.* for C<sub>13</sub>H<sub>10</sub>SO<sub>2</sub>: C 67.81, H 4.38, S 13.92, Found C 67.29, H 4.48, S 14.04.





# DEPT-Q <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 298 K) for thioxanthene sulfoxide



Page 1

# Journal Name

# ARTICLE

#### High-resolution mass spectrum (EI+) for thioxanthene sulfoxide

#### **Elemental Composition Report**

Multiple Mass Analysis: 4 mass(es) processed Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron Ions 10 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-13 H: 0-10 O: 0-1 32S: 0-1 Dave Hogan DTH-7-56ADave Hogan DTH-7-56A 200724DTH1 324 (5.941) Cm (297:324-71:106) CAB072 24-Jul-2020 09:26:37 TOF MS EI+ 4.71e+004 213.0378 214.0447 100 % 205.1623 215.0471 220.1882 221.0883 222.0905 206.1698 207.0345 209.2266 212.0322 216.0483 225.2566 227.1833 m/z 0 204.0 206.0 208.0 210.0 212.0 214.0 216.0 218.0 222.0 226.0 220.0 224.0 228.0 Minimum: 10.00 -1.5 Maximum: 100.00 5.0 20.0 Mass RA Calc. Mass mDa PPM DBE i-FIT Formula 205.1623 213.0378 214.0447 24.83 100.00 97.62 213.0374 0.4 1.9 -2.3 17821.6 9.5 C13 H9 O 32S C13 H10 O 32S 214.0452 -0.5 132.1 215.0471 18.35

#### Elemental analysis for recrystallized xanthene

| University<br>Departmer | of Calg<br>nt of Ch | ary<br>nemistry | EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date:       | 2-1-2023 |
|-------------------------|---------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|                         |                     |                 | 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 19 |             |          |
| Name:                   | DAVID               |                 | Group:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCS         |          |
| Sample:                 | XO-2                |                 | Weight (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg):        | 1.347    |
| %C (Actual):            |                     | 85.38           | %C (Theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | prectical): | 85,69%   |
| %H (Actual):            |                     | 5.61            | %H (The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oretical):  | 5.531.   |
| %N (Actual):            |                     | 0.00            | %N (The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oretical):  |          |
| %S (Actual):            |                     | 0.00            | %S (Theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | retical):   |          |

#### Elemental analysis for recrystallized thioxanthene

| University<br>Departmer | of Calg<br>nt of Ch | ary<br>nemistry | EA         | Date:      | 2-1-2023 |  |
|-------------------------|---------------------|-----------------|------------|------------|----------|--|
|                         |                     | 2               |            |            |          |  |
| Name:                   | DAVID               |                 | Group:     | TCS        |          |  |
| Sample:                 | XS-1                |                 | Weight (m  | ng):       | 1.566    |  |
| %C (Actual):            |                     | 78.84           | %C (Theor  | rectical): | 78,751,  |  |
| %H (Actual):            |                     | 5.13            | %H (Theo   | retical):  | 5.081,   |  |
| %N (Actual):            |                     | 0.00            | %N (Theo   | retical):  |          |  |
| %S (Actual):            |                     | 16.17           | %S (Theore | etical):   | 16.17 1  |  |

#### Elemental analysis for recrystallized thioxanthene sulfoxide

#### University of Calgary Department of Chemistry EA

| Departme     | ent of Chemistry | / EA Date:         | 2-1-2023 |  |  |
|--------------|------------------|--------------------|----------|--|--|
| Name:        | DAVID            | Group: TCS         |          |  |  |
| Sample:      | XSO-2            | Weight (mg):       | 1.911    |  |  |
| %C (Actual): | 73.15            | %C (Theorectical): | 72.871,  |  |  |
| %H (Actual): | 4.74             | %H (Theoretical):  | A.70%    |  |  |
| %N (Actual)  | 0.00             | %N (Theoretical):  |          |  |  |
| %S (Actual): | 15.05            | %S (Theoretical):  | 14.96%   |  |  |

#### Elemental analysis for recrystallized thioxanthene sulfone

| University<br>Departmer | of Calgar<br>nt of Che | y<br>mistry | EA        | Date:       | 2-1-2023 |  |
|-------------------------|------------------------|-------------|-----------|-------------|----------|--|
| Name:                   | DAVID                  |             | Group:    | TCS         |          |  |
| Sample:                 | XSO2-2                 |             | Weight (I | mg):        | 2.708    |  |
| %C (Actual):            | 6                      | 7.29        | %C (Theo  | prectical): | 67.81.11 |  |
| %H (Actual):            | 4                      | 1.48        | %H (Theo  | oretical):  | 4.381.   |  |
| %N (Actual):            |                        | 0.00        | %N (Theo  | oretical):  |          |  |
| %S (Actual):            | 14                     | .04         | %S (Theo  | retical):   | 13.92%   |  |

# Gas Chromatograms of 1 -4.













Journal Name



Figure 4. GC trace of  $4 (X = SO_2)$ .

# Crystallographic Packing diagrams of 1 - 4.



Figure 5. Solid-state packing arrangement of 1.



Figure 6. Solid-state packing arrangement of **2**.



Figure 7. Solid-state packing arrangement of **3**, highlighting the intermolecular H-bonding chains



Figure 8. Solid-state packing arrangement of 4.

#### Solution (10<sup>-5</sup> M, ACN) absorbance, emission, and excitation spectra.



Figure 9.a Absorption spectrum of 1 (X = O) in acetonitrile (10<sup>-5</sup> M).



Figure 10.a Absorption spectrum of 2 (X = S) in acetonitrile





Figure 9.b Absorption, Emission ( $\lambda_{ex}$  =250 nm) and excitation ( $\lambda_{em}$ =310 nm) spectra of 1 (X = O) in acetonitrile (10<sup>-5</sup> M).



Wavelength (nm) Figure 10.b Absorption, Emission ( $\lambda_{ex}$  =265 nm) and excitation

( $\lambda_{em}$  =340 nm) spectra of **1** (X = S) in acetonitrile (10<sup>-5</sup> M).

(10<sup>-5</sup> M).



Figure 11.a Absorption spectrum of 3 (X = SO) in acetonitrile (10<sup>-5</sup> M).



Figure 12.a Absorption spectrum of **4** (X = SO<sub>2</sub>) in acetonitrile ( $10^{-5}$  M).



Figure 12.b Absorption, Emission ( $\lambda_{ex}$  =240 nm) and excitation ( $\lambda_{em}$  =306 nm) spectra of **4** (X = SO<sub>2</sub>) in acetonitrile (10<sup>-5</sup> M).

Solution (5-50 mM, ACN) absorbance spectra.



Figure 13.a Absorption spectra of  $\mathbf{1}$  (X = O) at different concentrations in acetonitrile.



Figure 13.b Beer-Lambert plot of variable concentrations of 1.



Figure 14.a Absorption spectra of 2 (X = S) at different concentrations in acetonitrile.



Figure 15.a Absorption spectra of **3** (X = SO) at different concentrations in acetonitrile.



Figure 16.a Absorption spectra of  $\mathbf{4}$  (X = SO<sub>2</sub>) at different concentrations in acetonitrile.



Figure 14.b Beer-Lambert plot of variable concentrations of 2.



Figure 15.b Beer-Lambert plot of variable concentrations of 3.



Figure 16.b Beer-Lambert plot of variable concentrations of 4.

# Emission and Excitation spectra of 1 – 4 (50 mM, ACN)



Figure 17.a Emission and excitation spectra of 50 mM  ${\bf 1}$  (X = O) in ACN.



Figure 17.b Emission ( $\lambda_{\rm ex}$  =380 nm) and excitation( $\lambda_{\rm em}$  =460 nm) spectra of 50 mM **2** (X = S) in ACN.



Figure 18.a Emission ( $\lambda_{\rm ex}$  =315 nm) and excitation ( $\lambda_{\rm em}$  =460 nm) spectra of 50 mM  ${\bf 3}$  (X = SO) in ACN.



Figure 18.b Emission ( $\lambda_{ex}$  =405 nm) and excitation ( $\lambda_{em}$  =470 nm) spectra of 50 mM  ${\bf 4}$  (X = SO\_2) in ACN.

#### Solution (50 mM, ACN) variable temperature absorbance spectra of 1 - 4.







Figure 20.a Absorption spectra of  $\mathbf{3}$  (X = SO) at different temperatures in acetonitrile (50 mM).





Figure 21.a Emission lifetime of 50 mM 1 (X = O) in ACN with excitation at 405 nm.



Figure 19.b Absorption spectra of 2 (X = S) at different temperatures in acetonitrile (50 mM).



Figure 20.b Absorption spectra of 4 (X = SO<sub>2</sub>) at different temperatures in acetonitrile (50 mM).



Figure 21.b Emission lifetime of 50 mM  $\mathbf{2}$  (X = S) in ACN with excitation at 405 nm.



Figure 22.a Emission lifetime of 50 mM  $\mathbf{3}$  (X = SO) in ACN with excitation at 405 nm.



Figure 22.b Emission lifetime of 50 mM  ${\bf 4}~(X=SO_2)$  in ACN with excitation at 405 nm.

DFT calculated excited-state structure changes for 1 – 4.



Figure 23. Calculated RMSD in structures 1 - 4 between their ground state ( $S_0$ ), singlet excited state ( $S_1$ ) and excited state triplet ( $T_1$ ) using PyMol2.5 pair fit function. For all structures shown, the following colours are used for each state: blue =  $S_0$ ; red =  $S_1$ ; yellow =  $T_1$ .

ARTICLE

Computationally determined relevant  $S_n$  and  $T_n$  energies, and selected SOC constants for 1 - 4 in optimised  $S_1$  geometries.



Figure 24. Using the S<sub>1</sub>-optimised geometry, the relevant singlet and triplet energies (eV) of 1 - 4. In addition, below each energy diagram contains the magnitude of SOC constants ( $\xi$ ) in units of cm<sup>-1</sup>.

| Computationally | determined S <sub>n</sub> and | d T <sub>n</sub> energies (e | eV) at optimised S <sub>1</sub> | geometries for 1 - 4. |
|-----------------|-------------------------------|------------------------------|---------------------------------|-----------------------|
|-----------------|-------------------------------|------------------------------|---------------------------------|-----------------------|

|                                                 | 1 (X = O) |       |                   | 2 (X = S)                                       |       |       | 3 (X = SO                                       | )     | 4 (X = SO <sub>2</sub> ) |                                                 |       |  |
|-------------------------------------------------|-----------|-------|-------------------|-------------------------------------------------|-------|-------|-------------------------------------------------|-------|--------------------------|-------------------------------------------------|-------|--|
| S <sub>n</sub> and T <sub>n</sub> energies / eV |           |       | S <sub>n</sub> aı | S <sub>n</sub> and T <sub>n</sub> energies / eV |       |       | S <sub>n</sub> and T <sub>n</sub> energies / eV |       |                          | S <sub>n</sub> and T <sub>n</sub> energies / eV |       |  |
| State                                           | Sn        | Tn    | State             | Sn                                              | Tn    | State | Sn                                              | Tn    | State                    | Sn                                              | Tn    |  |
| 1                                               | 4.355     | 3.260 | 1                 | 3.703                                           | 2.613 | 1     | 2.629                                           | 2.313 | 1                        | 3.487                                           | 2.380 |  |
| 2                                               | 4.670     | 3.479 | 2                 | 3.945                                           | 3.270 | 2     | 3.911                                           | 3.183 | 2                        | 4.435                                           | 3.288 |  |
| 3                                               | 4.803     | 3.632 | 3                 | 4.402                                           | 3.419 | 3     | 3.972                                           | 3.459 | 3                        | 4.846                                           | 3.840 |  |
| 4                                               | 5.506     | 3.999 | 4                 | 5.078                                           | 3.823 | 4     | 4.389                                           | 3.816 | 4                        | 5.044                                           | 3.844 |  |
| 5                                               | 5.544     | 4.237 | 5                 | 5.277                                           | 4.243 | 5     | 4.440                                           | 3.898 | 5                        | 5.073                                           | 4.142 |  |
| 6                                               | 5.913     | 4.488 | 6                 | 5.299                                           | 4.324 | 6     | 4.869                                           | 4.142 | 6                        | 5.215                                           | 4.448 |  |
| 7                                               | 5.973     | 4.951 | 7                 | 5.643                                           | 4.575 | 7     | 4.918                                           | 4.153 | 7                        | 5.417                                           | 4.681 |  |
| 8                                               | 5.974     | 5.146 | 8                 | 5.760                                           | 4.826 | 8     | 5.159                                           | 4.347 | 8                        | 5.850                                           | 4.819 |  |
| 9                                               | 6.220     | 5.423 | 9                 | 5.884                                           | 4.933 | 9     | 5.373                                           | 4.395 | 9                        | 5.934                                           | 4.926 |  |
| 10                                              | 6.268     | 5.744 | 10                | 6.079                                           | 5.028 | 10    | 5.621                                           | 4.556 | 10                       | 5.968                                           | 5.052 |  |

| Computationally determined SOC constants (cm <sup>-1</sup> ) for | r singlet and triplet states in optimised S <sub>1</sub> geometries for 1 – 4. |
|------------------------------------------------------------------|--------------------------------------------------------------------------------|
|------------------------------------------------------------------|--------------------------------------------------------------------------------|

|    |                                  |       |                                  |        |        |    | •                                |        |    |                                  |        |  |
|----|----------------------------------|-------|----------------------------------|--------|--------|----|----------------------------------|--------|----|----------------------------------|--------|--|
|    | 1 (X = O)                        |       |                                  | 2 (X = | S)     |    | 3 (X = S                         | 0)     |    | $4 (X = SO_2)$                   |        |  |
|    | SOC constants / cm <sup>-1</sup> |       | SOC constants / cm <sup>-1</sup> |        |        |    | SOC constants / cm <sup>-1</sup> |        |    | SOC constants / cm <sup>-1</sup> |        |  |
| Tn | Sn                               | ξ     | Tn                               | Sn     | ξ      | Tn | Sn                               | ξ      | Tn | Sn                               | ξ      |  |
| 1  | 0                                | 0.022 | 1                                | 0      | 1.864  | 1  | 0                                | 11.413 | 1  | 0                                | 3.368  |  |
| 1  | 1                                | 0.010 | 1                                | 1      | 0.042  | 1  | 1                                | 0.778  | 1  | 1                                | 0.508  |  |
| 1  | 2                                | 0.010 | 1                                | 2      | 0.010  | 1  | 2                                | 2.360  | 1  | 2                                | 0.400  |  |
| 1  | 3                                | 0.000 | 1                                | 3      | 0.010  | 1  | 3                                | 2.094  | 1  | 3                                | 3.179  |  |
| 2  | 0                                | 0.000 | 2                                | 0      | 0.086  | 2  | 0                                | 5.375  | 2  | 0                                | 0.968  |  |
| 2  | 1                                | 0.000 | 2                                | 1      | 0.156  | 2  | 1                                | 7.418  | 2  | 1                                | 0.725  |  |
| 2  | 2                                | 0.010 | 2                                | 2      | 0.010  | 2  | 2                                | 2.531  | 2  | 2                                | 1.094  |  |
| 2  | 3                                | 0.000 | 2                                | 3      | 0.079  | 2  | 3                                | 1.005  | 2  | 3                                | 1.200  |  |
| 3  | 0                                | 0.000 | 3                                | 0      | 0.047  | 3  | 0                                | 1.091  | 3  | 0                                | 0.750  |  |
| 3  | 1                                | 0.000 | 3                                | 1      | 0.033  | 3  | 1                                | 7.396  | 3  | 1                                | 0.014  |  |
| 3  | 2                                | 0.036 | 3                                | 2      | 0.010  | 3  | 2                                | 3.245  | 3  | 2                                | 0.072  |  |
| 3  | 3                                | 0.028 | 3                                | 3      | 0.032  | 3  | 3                                | 0.825  | 3  | 3                                | 2.145  |  |
| 4  | 0                                | 0.120 | 4                                | 0      | 0.624  | 4  | 0                                | 15.492 | 4  | 0                                | 1.223  |  |
| 4  | 1                                | 0.000 | 4                                | 1      | 0.032  | 4  | 1                                | 11.436 | 4  | 1                                | 0.411  |  |
| 4  | 2                                | 0.010 | 4                                | 2      | 0.017  | 4  | 2                                | 1.980  | 4  | 2                                | 0.024  |  |
| 4  | 3                                | 0.000 | 4                                | 3      | 0.022  | 4  | 3                                | 1.612  | 4  | 3                                | 1.113  |  |
| 5  | 0                                | 0.045 | 5                                | 0      | 1.001  | 5  | 0                                | 4.220  | 5  | 0                                | 2.226  |  |
| 5  | 1                                | 0.050 | 5                                | 1      | 0.022  | 5  | 1                                | 0.457  | 5  | 1                                | 2.369  |  |
| 5  | 2                                | 0.010 | 5                                | 2      | 0.032  | 5  | 2                                | 1.239  | 5  | 2                                | 1.337  |  |
| 5  | 3                                | 0.010 | 5                                | 3      | 0.010  | 5  | 3                                | 0.367  | 5  | 3                                | 0.261  |  |
| 6  | 0                                | 0.000 | 6                                | 0      | 0.112  | 6  | 0                                | 1.480  | 6  | 0                                | 0.073  |  |
| 6  | 1                                | 0.000 | 6                                | 1      | 0.114  | 6  | 1                                | 0.658  | 6  | 1                                | 1.071  |  |
| 6  | 2                                | 0.014 | 6                                | 2      | 0.024  | 6  | 2                                | 1.610  | 6  | 2                                | 0.311  |  |
| 6  | 3                                | 0.036 | 6                                | 3      | 0.073  | 6  | 3                                | 1.104  | 6  | 3                                | 0.042  |  |
| 7  | 0                                | 0.022 | 7                                | 0      | 0.579  | 7  | 0                                | 0.997  | 7  | 0                                | 1.851  |  |
| 7  | 1                                | 0.000 | 7                                | 1      | 0.041  | 7  | 1                                | 2.942  | 7  | 1                                | 0.500  |  |
| 7  | 2                                | 0.000 | 7                                | 2      | 0.010  | 7  | 2                                | 0.553  | 7  | 2                                | 0.408  |  |
| 7  | 3                                | 0.010 | 7                                | 3      | 0.010  | 7  | 3                                | 1.737  | 7  | 3                                | 3.309  |  |
| 8  | 0                                | 0.000 | 8                                | 0      | 0.372  | 8  | 0                                | 9.113  | 8  | 0                                | 0.726  |  |
| 8  | 1                                | 0.010 | 8                                | 1      | 0.041  | 8  | 1                                | 6.555  | 8  | 1                                | 2.044  |  |
| 8  | 2                                | 0.036 | 8                                | 2      | 0.022  | 8  | 2                                | 0.272  | 8  | 2                                | 0.686  |  |
| 8  | 3                                | 0.010 | 8                                | 3      | 0.024  | 8  | 3                                | 1.126  | 8  | 3                                | 11.640 |  |
| 9  | 0                                | 0.010 | 9                                | 0      | 108.55 | 9  | 0                                | 13.883 | 9  | 0                                | 3.343  |  |
| 9  | 1                                | 0.010 | 9                                | 1      | 8.407  | 9  | 1                                | 27.915 | 9  | 1                                | 4.398  |  |
| 9  | 2                                | 0.000 | 9                                | 2      | 4.999  | 9  | 2                                | 2.243  | 9  | 2                                | 3.465  |  |
| 9  | 3                                | 0.000 | 9                                | 3      | 1.233  | 9  | 3                                | 2.486  | 9  | 3                                | 0.422  |  |
| 10 | 0                                | 0.000 | 10                               | 0      | 0.578  | 10 | 0                                | 2.982  | 10 | 0                                | 0.175  |  |
| 10 | 1                                | 0.000 | 10                               | 1      | 0.193  | 10 | 1                                | 7.023  | 10 | 1                                | 1.291  |  |
| 10 | 2                                | 0.010 | 10                               | 2      | 0.024  | 10 | 2                                | 2.587  | 10 | 2                                | 1.655  |  |
| 10 | 3                                | 0.036 | 10                               | 3      | 0.064  | 10 | 3                                | 0.134  | 10 | 3                                | 0.993  |  |

# Computationally determined $S_n$ and $T_n$ energies (eV) at optimised $S_0$ geometries for 1 - 4.

| 1 (X = O)         |                                                 |       | 2 (X = S) |                                                 |       |       | 3 (X = SO                                       | )     | 4 (X = SO <sub>2</sub> ) |                                                 |       |  |
|-------------------|-------------------------------------------------|-------|-----------|-------------------------------------------------|-------|-------|-------------------------------------------------|-------|--------------------------|-------------------------------------------------|-------|--|
| S <sub>n</sub> ar | S <sub>n</sub> and T <sub>n</sub> energies / eV |       |           | S <sub>n</sub> and T <sub>n</sub> energies / eV |       |       | S <sub>n</sub> and T <sub>n</sub> energies / eV |       |                          | S <sub>n</sub> and T <sub>n</sub> energies / eV |       |  |
| State             | Sn                                              | Tn    | State     | Sn                                              | Tn    | State | Sn                                              | Tn    | State                    | Sn                                              | Tn    |  |
| 1                 | 4.599                                           | 3.415 | 1         | 4.589                                           | 3.424 | 1     | 3.988                                           | 3.438 | 1                        | 5.064                                           | 3.488 |  |
| 2                 | 4.847                                           | 3.615 | 2         | 4.640                                           | 3.434 | 2     | 4.779                                           | 3.523 | 2                        | 5.135                                           | 3.580 |  |
| 3                 | 5.021                                           | 3.890 | 3         | 4.933                                           | 4.089 | 3     | 4.934                                           | 3.739 | 3                        | 5.271                                           | 4.359 |  |
| 4                 | 5.672                                           | 4.220 | 4         | 5.004                                           | 4.353 | 4     | 5.082                                           | 4.344 | 4                        | 5.567                                           | 4.398 |  |
| 5                 | 5.728                                           | 4.393 | 5         | 5.546                                           | 4.381 | 5     | 5.084                                           | 4.384 | 5                        | 5.601                                           | 4.532 |  |
| 6                 | 6.019                                           | 4.592 | 6         | 5.625                                           | 4.395 | 6     | 5.156                                           | 4.457 | 6                        | 5.830                                           | 4.598 |  |
| 7                 | 6.066                                           | 5.029 | 7         | 5.783                                           | 4.828 | 7     | 5.294                                           | 4.606 | 7                        | 5.937                                           | 5.006 |  |
| 8                 | 6.139                                           | 5.187 | 8         | 5.954                                           | 4.848 | 8     | 5.341                                           | 4.757 | 8                        | 6.027                                           | 5.089 |  |
| 9                 | 6.348                                           | 5.628 | 9         | 5.990                                           | 5.031 | 9     | 5.702                                           | 4.843 | 9                        | 6.126                                           | 5.291 |  |
| 10                | 6.423                                           | 5.854 | 10        | 6.054                                           | 5.221 | 10    | 5.717                                           | 4.898 | 10                       | 6.170                                           | 5.596 |  |

Computationally determined SOC constants (cm<sup>-1</sup>) for singlet and triplet states in optimised  $S_0$  geometries for 1 – 4.

|    | 1 (X = O)    |                      |    | 2 (X = S)   |                      |    | 3 (X = SO)    |                    |    | 4 (X = SO <sub>2</sub> )         |       |
|----|--------------|----------------------|----|-------------|----------------------|----|---------------|--------------------|----|----------------------------------|-------|
|    | SOC constant | s / cm <sup>-1</sup> | 9  | OC constant | s / cm <sup>-1</sup> |    | SOC constants | / cm <sup>-1</sup> |    | SOC constants / cm <sup>-1</sup> |       |
| Tn | Sn           | ٤                    | Tn | Sn          | ٤                    | Tn | Sn            | ξ                  | Tn | Sn                               | ٤     |
| 1  | 0            | 0.180                | 1  | 0           | 13.353               | 1  | 0             | 3.787              | 1  | 0                                | 2.560 |
| 1  | 1            | 0.148                | 1  | 1           | 1.051                | 1  | 1             | 6.862              | 1  | 1                                | 0.154 |
| 1  | 2            | 0.050                | 1  | 2           | 3.602                | 1  | 2             | 0.345              | 1  | 2                                | 0.811 |
| 1  | 3            | 0.120                | 1  | 3           | 1.474                | 1  | 3             | 0.440              | 1  | 3                                | 0.037 |
| 2  | 0            | 0.130                | 2  | 0           | 1.185                | 2  | 0             | 6.799              | 2  | 0                                | 1.238 |
| 2  | 1            | 0.130                | 2  | 1           | 0.187                | 2  | 1             | 4.496              | 2  | 1                                | 1.788 |
| 2  | 2            | 0.014                | 2  | 2           | 7.175                | 2  | 2             | 20.273             | 2  | 2                                | 0.024 |
| 2  | 3            | 0.022                | 2  | 3           | 1.429                | 2  | 3             | 2.590              | 2  | 3                                | 2.359 |
| 3  | 0            | 0.130                | 3  | 0           | 9.392                | 3  | 0             | 12.709             | 3  | 0                                | 0.269 |
| 3  | 1            | 0.060                | 3  | 1           | 1.916                | 3  | 1             | 2.854              | 3  | 1                                | 0.717 |
| 3  | 2            | 0.190                | 3  | 2           | 2.446                | 3  | 2             | 31.249             | 3  | 2                                | 0.072 |
| 3  | 3            | 0.032                | 3  | 3           | 0.485                | 3  | 3             | 2.268              | 3  | 3                                | 0.313 |
| 4  | 0            | 0.316                | 4  | 0           | 3.511                | 4  | 0             | 0.335              | 4  | 0                                | 0.975 |
| 4  | 1            | 0.362                | 4  | 1           | 2.458                | 4  | 1             | 1.168              | 4  | 1                                | 0.078 |
| 4  | 2            | 0.100                | 4  | 2           | 1.194                | 4  | 2             | 2.442              | 4  | 2                                | 0.586 |
| 4  | 3            | 0.030                | 4  | 3           | 1.909                | 4  | 3             | 1.721              | 4  | 3                                | 0.022 |
| 5  | 0            | 0.187                | 5  | 0           | 30.106               | 5  | 0             | 4.220              | 5  | 0                                | 3.133 |
| 5  | 1            | 0.076                | 5  | 1           | 1.901                | 5  | 1             | 10.853             | 5  | 1                                | 0.020 |
| 5  | 2            | 0.020                | 5  | 2           | 2.624                | 5  | 2             | 0.180              | 5  | 2                                | 0.348 |
| 5  | 3            | 0.020                | 5  | 3           | 0.289                | 5  | 3             | 0.528              | 5  | 3                                | 0.054 |
| 6  | 0            | 0.350                | 6  | 0           | 2.635                | 6  | 0             | 6.897              | 6  | 0                                | 1.970 |
| 6  | 1            | 0.040                | 6  | 1           | 1.771                | 6  | 1             | 16.639             | 6  | 1                                | 2.465 |
| 6  | 2            | 0.064                | 6  | 2           | 5.321                | 6  | 2             | 0.033              | 6  | 2                                | 0.017 |
| 6  | 3            | 0.054                | 6  | 3           | 0.222                | 6  | 3             | 4.386              | 6  | 3                                | 2.932 |
| 7  | 0            | 0.061                | 7  | 0           | 6.967                | 7  | 0             | 2.761              | 7  | 0                                | 2.009 |
| 7  | 1            | 0.067                | 7  | 1           | 0.528                | 7  | 1             | 6.337              | 7  | 1                                | 0.088 |
| 7  | 2            | 0.160                | 7  | 2           | 3.031                | 7  | 2             | 5.210              | 7  | 2                                | 0.589 |
| 7  | 3            | 0.050                | 7  | 3           | 0.871                | 7  | 3             | 0.889              | 7  | 3                                | 0.057 |
| 8  | 0            | 0.200                | 8  | 0           | 48.335               | 8  | 0             | 32.621             | 8  | 0                                | 0.734 |
| 8  | 1            | 0.060                | 8  | 1           | 2.067                | 8  | 1             | 46.112             | 8  | 1                                | 0.558 |
| 8  | 2            | 0.184                | 8  | 2           | 2.766                | 8  | 2             | 0.453              | 8  | 2                                | 0.051 |
| 8  | 3            | 0.030                | 8  | 3           | 1.211                | 8  | 3             | 1.824              | 8  | 3                                | 1.808 |
| 9  | 0            | 0.972                | 9  | 0           | 103.819              | 9  | 0             | 7.757              | 9  | 0                                | 1.268 |
| 9  | 1            | 0.340                | 9  | 1           | 3.955                | 9  | 1             | 0.174              | 9  | 1                                | 0.732 |
| 9  | 2            | 0.020                | 9  | 2           | 1.542                | 9  | 2             | 1.835              | 9  | 2                                | 1.564 |
| 9  | 3            | 0.080                | 9  | 3           | 1.774                | 9  | 3             | 1.417              | 9  | 3                                | 1.446 |
| 10 | 0            | 0.290                | 10 | 0           | 0.790                | 10 | 0             | 58.578             | 10 | 0                                | 8.087 |
| 10 | 1            | 0.070                | 10 | 1           | 1.738                | 10 | 1             | 23.222             | 10 | 1                                | 8.021 |
| 10 | 2            | 0.971                | 10 | 2           | 2.073                | 10 | 2             | 0.127              | 10 | 2                                | 0.437 |
| 10 | 3            | 0.193                | 10 | 3           | 0.559                | 10 | 3             | 3.030              | 10 | 3                                | 8.771 |

Excitation and emission spectra of crystalline samples of 1 - 4 (200 µs delay).



Figure 25.a Solid-state emission ( $\lambda_{ex}$  = 306 nm) and excitation ( $\lambda_{em}$  = 475 nm) spectra of 1 (X = 0).



Figure 26.a Solid-state emission ( $\lambda_{ex}$  = 280 nm or 350 nm) spectra of **3** (X = SO).



Figure 25.b Solid-state emission ( $\lambda_{ex}$  = 326 nm) and excitation ( $\lambda_{em}$  = 530 nm) spectra of **2** (X = S).



Figure 26.b Solid-state excitation ( $\lambda_{em}$  = 500 nm or 670 nm) spectra of **3** (X = SO).





Figure 27.a Solid-state emission ( $\lambda_{ex}$  = 306 nm) spectrum of **4** (X =  $SO_2$ ).



Variable Temperature Emission of Crystalline Samples of 1 – 4 (200 µs delay).



Figure 28.a Emission spectra of  $\boldsymbol{1}$  (X = O,  $\lambda_{ex}$  = 310 nm) at various temperatures.



Figure 29.a Emission spectra of **3** (X = SO,  $\lambda_{ex}$  = 280 nm) at various temperatures ..



Figure 28.b Emission spectra of **2** (X = S,  $\lambda_{ex}$  = 326 nm) at various temperatures.



Figure 29.b Emission spectra of **4** (X = SO<sub>2</sub>,  $\lambda_{ex}$  = 306 nm) at various temperatures.

#### Emission lifetimes of crystalline solids 1 – 4 (200 µs delay).



Figure 30.a Emission (475 nm) lifetime of solid 1 (X = O) with excitation at 310 nm.



Figure 30.b Emission (530 nm) lifetime of solid  ${f 2}$  (X = S) with excitation at 326 nm.



Figure 31.a Emission (500 nm) lifetime of solid  $\bf 3$  (X = SO) with excitation at 280 nm.



Figure 31.b Emission (670 nm) lifetime of solid  $\mathbf{3}$  (X = SO) with excitation at 280 nm.



Figure 32.a Emission (475 nmm) lifetime of solid 4 (X = SO<sub>2</sub>) with excitation at 306 nm.

Journal Name

# Emission of Crystalline Samples under either air or $N_2$ atmosphere (200 $\mu s$ delay).



Figure 34.a X = SO.

300

400

500

Wavelength (nm)

Steady-state fluorescence of crystalline samples of 1, 2, and 4.

600

700

800



Figure 35.a Emission (dashed line,  $\lambda_{ex}$  = 260 nm) and excitation (solid line,  $\lambda_{em}$  = 340 nm) spectra of **1** (X = O).



Figure 36.b Emission (dashed line,  $\lambda_{ex}$  = 260 nm) and excitation (solid line,  $\lambda_{em}$  = 340 nm) spectra of **4** (X = SO<sub>2</sub>).



Figure 34.b X = SO<sub>2</sub>



Figure 35.b Emission (dashed line,  $\lambda_{ex}$  = 285 nm) and excitation (solid line,  $\lambda_{em}$  = 360 nm) spectra of **2** (X = S).

# Emission lifetimes of crystalline solids 1 – 4 (prompt).



Figure 37.a Emission (320 nm) lifetime of solid  $\mathbf{1}$  (X = O) with excitation at 290 nm. Raw data (open circles), Instrument response factor (IRF, solid points), best fit (line) and residuals plot of best-fit line.



Figure 37.b Emission (385 nm) lifetime of solid **2** (X = S) with excitation at 310 nm. Raw data (open circles), Instrument response factor (IRF, solid points), best fit (line) and residuals plot of best-fit line.



Figure 38.b Emission (340 nm) lifetime of solid **4** (X = SO<sub>2</sub>) with excitation at 290 nm. Raw data (open circles), Instrument response factor (IRF, solid points), best fit (line) and residuals plot of best-fit line.

Journal Name

Irradiance power (transmittance) versus emission intensity of crystalline solids 1-4.





Figure 40.a X = SO.



Figure 40.b  $X = SO_2$ 

Natural Transition orbitals (NTOs) of 1 - 4.



Figure 41. Natural transition orbitals (NTOs) of  $T_1$  state for 1 - 4.

# DFT Computations Orca 5.0.3, PBE0 D4 def2-TZVP – Ground states (S<sub>0</sub>) of 1 – 4.

# X = 0

| Energy: -57  | 6.052695817400Eh | Lowest IR freq: 119.48 cm <sup>-1</sup> |                   |
|--------------|------------------|-----------------------------------------|-------------------|
| Cartesian co | oordinates:      |                                         |                   |
| 0            | 3.23983454815159 | 5.22175728558252                        | 1.25235369268813  |
| С            | 2.95508470565381 | 4.04505663058156                        | 0.62540811840521  |
| С            | 3.40783991635032 | 2.89644987166393                        | 1.26142152707945  |
| Н            | 3.94883590411115 | 2.99915099782478                        | 2.19437547447434  |
| С            | 3.16477837408518 | 1.65864733584873                        | 0.69810987099807  |
| Н            | 3.51843805268470 | 0.76373790103818                        | 1.19650981479866  |
| С            | 2.47437058999743 | 1.56623850735745                        | -0.50351555153170 |
| Н            | 2.28342723880574 | 0.59939463598296                        | -0.95323939358014 |
| С            | 2.03085261185120 | 2.72061017642900                        | -1.12335924738511 |
| Н            | 1.48866461105057 | 2.65521667969880                        | -2.06181377698351 |
| С            | 2.25571210184204 | 3.97762935274973                        | -0.57260457142553 |
| С            | 1.74442909097180 | 5.22175956457739                        | -1.23305089152757 |
| Н            | 0.64699140887812 | 5.22176045231195                        | -1.21399419383046 |
| Н            | 2.02310343275352 | 5.22176036264947                        | -2.29252922167147 |
| С            | 2.95508588705778 | 6.39845888248882                        | 0.62540952832051  |
| С            | 3.40784250952764 | 7.54706406485029                        | 1.26142474059103  |
| Н            | 3.94883926592380 | 7.44436070479144                        | 2.19437794924400  |
| С            | 3.16478295937631 | 8.78486766311407                        | 0.69811425948705  |
| Н            | 3.51844420791213 | 9.67977610862680                        | 1.19651490613376  |
| С            | 2.47437449735559 | 8.87727879839778                        | -0.50351051601065 |
| Н            | 2.28343310390368 | 9.84412348880488                        | -0.95323344618967 |
| С            | 2.03085487122529 | 7.72290848896143                        | -1.12335577888865 |
| Н            | 1.48866705907779 | 7.78830372416279                        | -2.06181031661697 |
| С            | 2.25571305145280 | 6.46588832150524                        | -0.57260297657877 |

| X = S       |                                      |                                                          |                                                             |
|-------------|--------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|
| Energy: -89 | 8.936764454031Eh                     | Lowest IR freq: 56.24 cm <sup>-1</sup>                   |                                                             |
| Cartesian c | oordinates:                          |                                                          |                                                             |
| С           | 0.95167393509505                     | 0.45435963483867                                         | 0.59502651019526                                            |
| С           | 5.07958695528255                     | -2.56712200400958                                        | 0.18249101312026                                            |
| С           | 5.28927959558528                     | -1.89985429219280                                        | 1.38017639764037                                            |
| С           | 4.48484193560784                     | -0.82691502830488                                        | 1.72551645845916                                            |
| С           | 3.48788495998840                     | -0.40294800218172                                        | 0.85516905065091                                            |
| С           | -0.23772620176672                    | 0.77008900891377                                         | 1.24055973500243                                            |
| С           | -1.44615484838030                    | 0.38267054293573                                         | 0.68619774693924                                            |
| С           | -1.46624388695895                    | -0.34110422255046                                        | -0.49699570312058                                           |
| С           | -0.27537487961367                    | -0.65907168703725                                        | -1.13134874842676                                           |
| С           | 0.94344533619894                     | -0.24982160040173                                        | -0.60875148399299                                           |
| С           | 2.24499894867926                     | -0.51399202479884                                        | -1.30173722470699                                           |
| С           | 3.28694707832020                     | -1.04620433680577                                        | -0.36561225295192                                           |
| С           | 4.07900883953388                     | -2.14232068993634                                        | -0.67777515541329                                           |
| Н           | 5.69619912437423                     | -3.41770146676271                                        | -0.08257642078374                                           |
| Н           | 6.06811869390247                     | -2.22677185318637                                        | 2.05902596401995                                            |
| Н           | 4.61715400265511                     | -0.32261822363353                                        | 2.67570787689932                                            |
| Н           | -0.21075928185721                    | 1.30640856195226                                         | 2.18209483492994                                            |
| Н           | -2.37248289610863                    | 0.63208634373862                                         | 1.19001938969607                                            |
| Н           | -2.40912177797461                    | -0.65927522419541                                        | -0.92552070837899                                           |
| Н           | -0.28823687057256                    | -1.22216691455895                                        | -2.05883979215692                                           |
| Н           | 2.61152815025448                     | 0.44064236222222                                         | -1.70883365294196                                           |
| Н           | 2.10300200867235                     | -1.19075479803045                                        | -2.14569475265459                                           |
| Н           | 3.91639580738460                     | -2.65919455128378                                        | -1.61792702538807                                           |
| S           | 2.47893527169799                     | 0.96738046526930                                         | 1.30142794336389                                            |
|             |                                      |                                                          |                                                             |
|             |                                      |                                                          |                                                             |
| X = SO      |                                      |                                                          |                                                             |
| Energy: -97 | 4.098803947903 Eh                    | Lowest IR freq: 55.34 cm <sup>-1</sup>                   |                                                             |
| Cartesian c | oordinates:                          |                                                          |                                                             |
| S           | 5.59317398115394                     | 0.82678385017596                                         | 13.38862043355899                                           |
| 0           | 4.63244306501793                     | -0.23861544475183                                        | 13.00496755534847                                           |
| С           | 5.06178777988837                     | 1.45156471267884                                         | 14.97218634346463                                           |
| С           | 5.84718016520031                     | 1.20852591755411                                         | 16.08602657141257                                           |
| Н           | 6.80483237054276                     | 0.71286454103941                                         | 15.96964571947892                                           |
| С           | 5.39450492675197                     | 1.59510131387897                                         | 17.33853324017266                                           |
| Н           | 6.00130507754494                     | 1.41093535730088                                         | 18.21688263575961                                           |
| С           | 4.15931490784075                     | 2.21209476413914                                         | 17.45694320548213                                           |
| Н           | 3.79831604961765                     | 2.51561545801456                                         | 18.43274424537232                                           |
| С           | 3.38086017918804                     | 2.45392684758564                                         | 16.33231885492220                                           |
| Н           | 2.42137212152406                     | 2.94983067169898                                         | 16.43528830131152                                           |
| С           | 3.82123289792701                     | 2.07940532417784                                         | 15.07265500199709                                           |
| С           | 3.02359046720496                     | 2.34406005909480                                         | 13.83032972892309                                           |
| Н           | 2.58033492292410                     | 1.39562931384908                                         | 13.50067413574008                                           |
| Н           | 2.20712613652967                     | 3.03603256542441                                         | 14.04013238106344                                           |
| С           | 3.88229738271209                     | 2.86842710420871                                         | 12.71770864596401                                           |
| С           | 3.49392965502536                     | 3.93113925954382                                         | 11.91700876595198                                           |
| Н           | 2.53217860114273                     | 4.40317006450863                                         | 12.08864855904235                                           |
| С           |                                      | 4 40050600051                                            | 10 0100000174024                                            |
|             | 4.32715297729031                     | 4.40252633080951                                         | 10.910696481/4634                                           |
| Н           | 4.00607500128822                     | 4.40252633080951<br>5.23629715104806                     | 10.29716439410340                                           |
| н<br>С      | 4.00607500128822<br>5.56551779542255 | 4.40252633080951<br>5.23629715104806<br>3.82024965498959 | 10.91069648174634<br>10.29716439410340<br>10.69217769886528 |

2.75218212324388

2.27227978750198

2.28775434367262

5.96675619192191

6.92596551550633

5.12691537482939

С

Η С

12.47802616160096

11.48046242940798 11.31964537950926

| X = SO2     |                     |                                        |                   |  |
|-------------|---------------------|----------------------------------------|-------------------|--|
| Energy: -10 | )49.312794972365 Eh | Lowest IR freq: 56.35 cm <sup>-1</sup> |                   |  |
| Cartesian o | coordinates:        |                                        |                   |  |
| С           | 4.18616782941285    | -2.28151204889230                      | 2.20367642609250  |  |
| С           | 3.71351079767973    | -3.18233494959390                      | 1.26142123239435  |  |
| С           | 3.24013971487582    | -4.41016852755999                      | 1.72020406505592  |  |
| С           | 1.81757763661600    | -4.50544308645496                      | -0.56344877977066 |  |
| С           | 2.38851509434498    | -3.26909961487884                      | -0.85847228603835 |  |
| С           | 4.18705368871365    | -2.60497196871270                      | 3.55347905278815  |  |
| С           | 3.69975880214856    | -3.82892368235576                      | 3.98666781340433  |  |
| С           | 3.21341802886866    | -4.74062511382595                      | 3.06318864940288  |  |
| С           | 0.61107826574264    | -4.91441416100636                      | -1.10290198265198 |  |
| С           | -0.04333074748904   | -4.07587445077535                      | -1.99095211683013 |  |
| С           | 0.51041579260091    | -2.84476363820273                      | -2.30894439862744 |  |
| С           | 1.71186116504312    | -2.44207962732521                      | -1.74226461371170 |  |
| С           | 3.68169114336561    | -2.86461859107913                      | -0.20755047390468 |  |
| Н           | 4.55098425446821    | -1.31338101996595                      | 1.87793513802151  |  |
| Н           | 4.56089906571405    | -1.88715940958125                      | 4.27434621993304  |  |
| Н           | 3.69189280943149    | -4.07103755191549                      | 5.04245009473341  |  |
| Н           | 2.81203219777663    | -5.69951384879129                      | 3.36784417193226  |  |
| Н           | 0.19991852776361    | -5.87550940322005                      | -0.81904109341814 |  |
| Н           | -0.98730567217887   | -4.37947937214103                      | -2.42701089157280 |  |
| Н           | -0.00380676961872   | -2.18311676406103                      | -2.99625680943795 |  |
| Н           | 2.12554521853927    | -1.46885496220092                      | -1.98338429175334 |  |
| Н           | 3.86360588490268    | -1.80074109758770                      | -0.36381652249941 |  |
| Н           | 4.49913134644287    | -3.41071760596088                      | -0.69591009505804 |  |
| 0           | 3.88298216127496    | -6.02753944918450                      | -0.19525225287997 |  |
| 0           | 1.82127488106420    | -6.53164025991587                      | 1.09991422412977  |  |
| S           | 2.71328888249613    | -5.57317979481080                      | 0.50987952026648  |  |

# DFT Computations Orca 5.0.3, PBE0 D4 def2-TZVP – $S_1$ of 1 – 4.

#### X = 0

| Energy: -576 | 5.024706556601 Eh | Lowest IR freq: 59.55 cm <sup>-1</sup> |                   |
|--------------|-------------------|----------------------------------------|-------------------|
| Cartesian co | oordinates:       |                                        |                   |
| 0            | 3.37017834268050  | 5.22175736343241                       | 1.13372185116080  |
| С            | 3.02258434649571  | 4.04623956085272                       | 0.57448662394895  |
| С            | 3.45254375673798  | 2.91006340298608                       | 1.27040264572037  |
| Н            | 4.01860262480036  | 3.03411923602832                       | 2.18322173118716  |
| С            | 3.12432288202021  | 1.66172369896618                       | 0.74492247957013  |
| Н            | 3.43783208647130  | 0.75888230631501                       | 1.25338059050006  |
| С            | 2.39104745482899  | 1.57509011062205                       | -0.43795475545301 |
| Н            | 2.14290932651011  | 0.59737594966733                       | -0.83535919060251 |
| С            | 1.97049721680163  | 2.71575795472005                       | -1.11980498648823 |
| Н            | 1.40142842919668  | 2.63548759211741                       | -2.03769114709237 |
| С            | 2.28582295906801  | 3.99070395688294                       | -0.61376067973746 |
| С            | 1.85874166996442  | 5.22175947837038                       | -1.30422916871619 |
| Н            | 0.75577129775090  | 5.22175955983454                       | -1.43876221255701 |
| Н            | 2.23049161581033  | 5.22176048053872                       | -2.35140742301736 |
| С            | 3.02258540016087  | 6.39727590703842                       | 0.57448881983697  |
| С            | 3.45254621438483  | 7.53345072427187                       | 1.27040690371568  |
| Н            | 4.01860525661202  | 7.40939310580664                       | 2.18322560157010  |
| С            | 3.12432682454940  | 8.78179164468376                       | 0.74492758065174  |
| Н            | 3.43783700207019  | 9.68463237375698                       | 1.25338619934480  |
| С            | 2.39105219169842  | 8.86842689792141                       | -0.43795016210508 |
| Н            | 2.14291421585674  | 9.84614183213420                       | -0.83535288701794 |
| С            | 1.97050072265767  | 7.72776059755036                       | -1.11980260716377 |
| Н            | 1.40143363920161  | 7.80803295350829                       | -2.03768962083806 |
| С            | 2.28582452367109  | 6.45281331199389                       | -0.61375918641778 |

X = S

| Energy                 | : -898 | .936764454031 Eh  | Lowest IR freq: 33.53 cm <sup>-1</sup> |                   |
|------------------------|--------|-------------------|----------------------------------------|-------------------|
| Cartesian coordinates: |        |                   |                                        |                   |
|                        | С      | 0.77221717426526  | 0.08016890278275                       | 0.83801485886852  |
|                        | С      | 5.50253433816719  | -2.14189628194712                      | -0.04772092887474 |
|                        | С      | 5.62146069751320  | -1.60369087427904                      | 1.26269986255904  |
|                        | С      | 4.56388220473236  | -0.94605896694935                      | 1.82153333829952  |
|                        | С      | 3.35364218684907  | -0.79767378104402                      | 1.10594814153370  |
|                        | С      | -0.38737787441931 | 0.73812289861893                       | 1.30838648575058  |
|                        | С      | -1.50284400974712 | 0.81763598771578                       | 0.52567684189466  |
|                        | C      | -1,49543423182916 | 0.23451992770435                       | -0.77093075618226 |
|                        | Ĉ      | -0.36493626637656 | -0.40744738196246                      | -1.23025454319396 |
|                        | Ĉ      | 0.79521793354315  | -0.51397474760447                      | -0.46793918589170 |
|                        | Ĉ      | 1.97733600869452  | -1.21471026972702                      | -1.01171793718396 |
|                        | Ĉ      | 3.21760106451634  | -1.33632097147374                      | -0.21707567243268 |
|                        | C      | 4.32246083064145  | -1.99790673068189                      | -0.74611193491933 |
|                        | Н      | 6.33770408862310  | -2.66430723855960                      | -0.49707835832168 |
|                        | Н      | 6.54509596405446  | -1.71369083716136                      | 1.81678088403697  |
|                        | Н      | 4.64013016804645  | -0.52961038648386                      | 2.82067850327804  |
|                        | Н      | -0.37776716921775 | 1.17864281535537                       | 2.30003488882563  |
|                        | Н      | -2.38750936226088 | 1.32265820674202                       | 0.89243007926959  |
|                        | Н      | -2.37662277191996 | 0.29424192409129                       | -1.39721527103660 |
|                        | н      | -0.36876820137338 | -0.85052920547307                      | -2.22226662796611 |
|                        | Н      | 2.23730959852867  | -0.74244482730426                      | -1.97320662642704 |
|                        | Н      | 1.66358584556204  | -2.22948597665146                      | -1.30583706831350 |
|                        | Н      | 4.24031678835030  | -2.41299215448002                      | -1.74679029822885 |
|                        | S      | 2.10366499505647  | 0.04254996877228                       | 1.89376132465614  |
|                        |        |                   |                                        |                   |
|                        |        |                   |                                        |                   |
| X = SO                 |        |                   |                                        |                   |
| Energy                 | : -973 | .954321575307 Eh  | Lowest IR freq: 58.51 cm <sup>-1</sup> |                   |
| Cartesi                | ian co | ordinates:        |                                        |                   |
|                        | S      | 5.49701753991482  | 0.88558234633624                       | 13.40535852135563 |
|                        | 0      | 5.00719859693024  | -0.44224382274316                      | 12.94697028563788 |
|                        | С      | 5.02041298951647  | 1.40561443856016                       | 14.95658363270600 |
|                        | С      | 5.82196520288916  | 1.16671724576281                       | 16.08743662670689 |
|                        | Н      | 6.76229561303805  | 0.63886287830528                       | 15.98792170483613 |
|                        | С      | 5.39160847137453  | 1.61636741291028                       | 17.31514491859652 |
|                        | Н      | 6.00530045058242  | 1.44003333590783                       | 18.19051239403603 |
|                        | С      | 4.17445306071476  | 2.28721159027881                       | 17.43832205645025 |
|                        | Н      | 3.83678192104261  | 2.62881529307415                       | 18.40837131875283 |
|                        | С      | 3.38888808791971  | 2.51552815724034                       | 16.30785781935402 |
|                        | Н      | 2.44880011393544  | 3.04928293761918                       | 16.40245152026829 |
|                        | С      | 3.77585370623457  | 2.07988285674285                       | 15.06010138571351 |
|                        | С      | 2.97594611045760  | 2.30007193618134                       | 13.81443460254248 |
|                        | Н      | 2.56875623149806  | 1.33010932578488                       | 13.47899425064106 |
|                        | Н      | 2.12695614599009  | 2.95459320357378                       | 14.01216951708771 |
|                        | С      | 3.83595210311319  | 2.86197110310492                       | 12.72571060728556 |
|                        | С      | 3.50001969844289  | 3.96592776192822                       | 11.97412876764028 |
|                        | Н      | 2.55672232663740  | 4.46315612741751                       | 12.17563017285774 |
|                        | С      | 4.34058151692371  | 4.45147670234079                       | 10.97163686043694 |
|                        | Η      | 4.04230397809479  | 5.31225878168228                       | 10.38698953574410 |
|                        | С      | 5.56146271332369  | 3.82337033097513                       | 10.72321388706138 |
|                        | Η      | 6.21746145281261  | 4.19936202598657                       | 9.94714074774278  |
|                        | С      | 5.94196640980335  | 2.71968336448827                       | 11.45237403056188 |
|                        | Η      | 6.88489904472674  | 2.22384014982261                       | 11.25800744464835 |
|                        | С      | 5.08529651408303  | 2.24262451671889                       | 12.46083739133565 |

| X = SO2    |                      |                                        |                   |  |
|------------|----------------------|----------------------------------------|-------------------|--|
| Energy: -2 | 1049.127888789644 Eh | Lowest IR freq: 55.61 cm <sup>-1</sup> |                   |  |
| Cartesian  | coordinates:         |                                        |                   |  |
| С          | 3.84678165995569     | -2.22094585627194                      | 1.85788659861757  |  |
| С          | 3.83479384171946     | -3.31941706580473                      | 0.98991499846469  |  |
| С          | 3.40398493211146     | -4.60874112319971                      | 1.50990594118484  |  |
| C          | 2.08084944185730     | -4.69341367437047                      | -0.60042937874665 |  |
| С          | 2.69025325789271     | -3.39325344605357                      | -0.83724854615406 |  |
| С          | 3.56898219215493     | -2.37997780618251                      | 3.19438947860857  |  |
| С          | 3.18967279501715     | -3.65207892343712                      | 3.69379645442091  |  |
| С          | 3.09620279760552     | -4.74548427940324                      | 2.86356740249948  |  |
| С          | 0.73532225152227     | -4.89819664096984                      | -0.90481879796377 |  |
| С          | -0.00903269797868    | -3.86009534866219                      | -1.41643644943260 |  |
| С          | 0.55979141428121     | -2.57619538084860                      | -1.61535104015752 |  |
| С          | 1.87588568349318     | -2.34894702047041                      | -1.29171303442631 |  |
| С          | 4.12149694790536     | -3.19888287237921                      | -0.46812038790857 |  |
| Н          | 4.13132294827691     | -1.25038018536932                      | 1.46674399173344  |  |
| Н          | 3.64276096418414     | -1.53724631923495                      | 3.86974472206939  |  |
| Н          | 2.95110187456089     | -3.75795358986203                      | 4.74564261678532  |  |
| Н          | 2.76046260745093     | -5.70712950164226                      | 3.23074712302426  |  |
| Н          | 0.29418351440312     | -5.86664845981778                      | -0.70564724477273 |  |
| Н          | -1.05422095225475    | -4.01903055402229                      | -1.65454111542644 |  |
| Н          | -0.04522645396042    | -1.77835115632286                      | -2.02655503605218 |  |
| Н          | 2.31661484849961     | -1.36861719098721                      | -1.43545696701075 |  |
| Н          | 4.48049710097311     | -2.20637939541932                      | -0.73319990708050 |  |
| Н          | 4.77904518375677     | -3.98246550858412                      | -0.84816923706093 |  |
| 0          | 4.20118491574096     | -6.18440106871441                      | -0.40127592048271 |  |
| 0          | 2.17988967306401     | -6.82942127886359                      | 0.89324640765706  |  |
| S          | 3.01569925776712     | -5.80304635310622                      | 0.32917732761018  |  |

# DFT Computations Orca 5.0.3, UHF def2-SVP – $T_1$ of 1 – 4.

X =

| X = O       |                    |                                       |                   |
|-------------|--------------------|---------------------------------------|-------------------|
| Energy: -57 | 72.933311490208 Eh | Lowest IR freq: 49.39cm <sup>-1</sup> |                   |
| Cartesian o | coordinates:       |                                       |                   |
| 0           | 3.48322478657204   | 5.22310669580206                      | 1.03889964076132  |
| С           | 3.08068672784722   | 4.03289047637432                      | 0.53148005776116  |
| С           | 3.45834140680124   | 2.88870684359439                      | 1.24238859734677  |
| Н           | 4.04377311222539   | 3.00768325997182                      | 2.14321454614147  |
| С           | 3.07322539438520   | 1.63320727483257                      | 0.78204763260012  |
| Н           | 3.36262681586478   | 0.74722243202173                      | 1.33139535394530  |
| С           | 2.31066028807691   | 1.52225879018237                      | -0.38588919477260 |
| Н           | 2.00679979210277   | 0.54926702029436                      | -0.74818458243005 |
| С           | 1.94300131053089   | 2.67289120966680                      | -1.08214832954446 |
| Н           | 1.35191108768518   | 2.58715034171270                      | -1.98577794086380 |
| С           | 2.32251876241687   | 3.94931007843658                      | -0.63933661254453 |
| С           | 1.94063987948738   | 5.19601956753682                      | -1.40631890589117 |
| Н           | 0.86707327860456   | 5.18923109366991                      | -1.60799215474499 |
| Н           | 2.43495069849273   | 5.19001539953655                      | -2.38225700785597 |
| С           | 3.07038723307127   | 6.37667583972767                      | 0.48580818555190  |
| С           | 3.50028225588986   | 7.59692053639507                      | 1.26044228559312  |
| Н           | 4.10498694535242   | 7.45296914389372                      | 2.14257399514206  |
| С           | 3.09356752274039   | 8.84925794027843                      | 0.80397626747566  |
| Н           | 3.38484429468446   | 9.73725771664197                      | 1.35062168485659  |
| С           | 2.32334140198655   | 8.96900287286721                      | -0.34304728955584 |
| Н           | 2.00568289023045   | 9.93728299619672                      | -0.70316841451339 |
| С           | 1.91466166527680   | 7.72485924071402                      | -1.11784644963073 |
| Н           | 1.32071313273798   | 7.83117741462338                      | -2.01445183792367 |
| С           | 2.31249931693661   | 6.45783581502868                      | -0.66102952690426 |
|             |                    |                                       |                   |

X = S

ARTICLE

| Energy: -895.506286049398 Eh |                   | Lowest IR freq: 36.24 cm <sup>-1</sup> |                   |
|------------------------------|-------------------|----------------------------------------|-------------------|
| Cartesian                    | coordinates:      |                                        |                   |
| С                            | 0.99643582969118  | 0.72882421362837                       | 0.48576009882343  |
| С                            | 5.35333897898474  | -2.34595889575582                      | -0.00694966988156 |
| С                            | 5.33240620321686  | -2.02515665238811                      | 1.35379166783631  |
| С                            | 4.30248741719046  | -1.23676745209159                      | 1.86193509380707  |
| С                            | 3.28192781257853  | -0.75831327616667                      | 1.02006996995197  |
| С                            | -0.30479757172435 | 1.32379160983792                       | 0.93490573590093  |
| С                            | -1.47153115527677 | 0.67306233785476                       | 0.63152511479797  |
| С                            | -1.47452675982484 | -0.46253422692910                      | -0.23313288307021 |
| С                            | -0.27655712439993 | -0.87668145435735                      | -0.88903291694767 |
| С                            | 0.92402322981085  | -0.26253126660476                      | -0.63796090549963 |
| С                            | 2.21641397296760  | -0.59512121764227                      | -1.31431328686240 |
| С                            | 3.28717707252118  | -1.08328908133731                      | -0.35202378559723 |
| С                            | 4.33852689502531  | -1.87586760409540                      | -0.84095813101850 |
| Н                            | 6.14687989380616  | -2.95937173933335                      | -0.41241802032076 |
| Н                            | 6.10962022488938  | -2.38592503528105                      | 2.01430242236727  |
| Н                            | 4.28446891631813  | -0.98537489956661                      | 2.91436802228603  |
| Н                            | -0.29831031227347 | 2.24140300110677                       | 1.50879555633068  |
| Н                            | -2.41488471169892 | 1.05708251337907                       | 0.99986425216687  |
| Н                            | -2.40643823077028 | -0.96373756480744                      | -0.45638206012814 |
| Н                            | -0.33218824731760 | -1.66025679202844                      | -1.63562031929050 |
| Н                            | 2.58989635524063  | 0.30312775387656                       | -1.82165956122522 |
| Н                            | 2.05543268916434  | -1.34901068253735                      | -2.08498592079555 |
| Н                            | 4.35139523360403  | -2.13304945418870                      | -1.89302118410241 |
| S                            | 2.04170338827672  | 0.23745586542788                       | 1.80494071047122  |
|                              |                   |                                        |                   |

DFT Computations Orca 5.0.3, UHF def2-SVP - T<sub>1</sub>

X = SO

Energy: -970.482066348404 Eh Lowest IR freq: 25.90 cm<sup>-1</sup> Cartesian coordinates: 4.13848954349066 11.06304500284040 0.12864850916401 S 0 4.38593751855745 -0.07083823238365 9.60822500621710 С 5.36017705516242 1.60419017865185 15.93898901157399 5.65563963586887 1.99260281279456 17.23843752961738 С 6.62397554303363 1.80002546693687 17.68144083854082 Η 17.95849780594622 С 4.64173663437809 2.64546610384546 Η 4.81960842582316 2.96784969559069 18.97618524091199 С 3.39704862484351 2.87454645735428 17.35471333283562 2.61458802392410 3.37331212448849 17.91110341243117 Н С 3.15004847833897 2.46211403757731 16.03600981601099 Η 2.18026530011807 2.64926543662005 15.59131547890057 4.14446314710593 1.80641589973001 15.28627208026519 С 1.34422322002913 13.86475501359894 С 3.91336688637652 Н 4.36596224241951 0.35815707166069 13.75384333729885 2.84067120471589 1.20327766820793 13.70853401659456 Η С 4.44856516128837 2.26389860782420 12.77341491591179 4.79926625359669 3.59641451114543 13.02507291640150 С Η 4.72035190549974 3.98438393346999 14.02991753305538 С 5.25567290549568 4.43821185617333 12.00269748302321 5.51796705726868 5.46275655240808 12.23128067697973 Η 5.36888901657279 3.95771787146022 10.69431067215910 С Η 5.71811779132470 4.60521468786796 9.90136839860114 С 5.02812656557333 2.63559707445065 10.41062779927919 5.10913955618553 2.24272448651232 9.40814694343443 Η С 4.57082552303720 1.79392396841989 11.44009573756921

This journal is © The Royal Society of Chemistry 20xx

| $X = SO_2$   |                   |                                        |                   |  |
|--------------|-------------------|----------------------------------------|-------------------|--|
| Energy: -104 | 45.06208630477 Eh | Lowest IR freq: 55.09 cm <sup>-1</sup> |                   |  |
| Cartesian co | oordinates:       |                                        |                   |  |
| С            | 4.28388720597091  | -2.25775313596628                      | 2.18692198826777  |  |
| С            | 3.78487189187384  | -3.13400709631887                      | 1.22537098840942  |  |
| С            | 3.20735806785251  | -4.45867968503400                      | 1.71573040585510  |  |
| С            | 1.86083269837176  | -4.53801538282544                      | -0.58248834469544 |  |
| С            | 2.41309473711625  | -3.27273581526271                      | -0.86996691637883 |  |
| С            | 4.22105736785192  | -2.55262445157975                      | 3.54323139452091  |  |
| С            | 3.55292083781286  | -3.83428773336701                      | 4.00534152858596  |  |
| С            | 3.07941119334398  | -4.74312127319914                      | 3.07213937095995  |  |
| С            | 0.62666198498614  | -4.94610683851635                      | -1.08992348013154 |  |
| С            | -0.07704403145274 | -4.08413588233389                      | -1.93452789930131 |  |
| С            | 0.45533485988670  | -2.83020812596999                      | -2.24485717961492 |  |
| С            | 1.68444392829473  | -2.42650667785003                      | -1.71148527414650 |  |
| С            | 3.74163321156105  | -2.86219171028641                      | -0.25821106629089 |  |
| Н            | 4.72228976725250  | -1.32030510840473                      | 1.86711967015416  |  |
| Н            | 4.62797646509678  | -1.87843649481092                      | 4.28238260491806  |  |
| Н            | 3.45523454974549  | -4.02523095416485                      | 5.06447970925991  |  |
| Н            | 2.61993147225011  | -5.67257152083102                      | 3.37917529622780  |  |
| Н            | 0.23172058177572  | -5.91451424253250                      | -0.81846069679744 |  |
| Н            | -1.03294436527446 | -4.38619290282060                      | -2.34048369769587 |  |
| Н            | -0.08872840964438 | -2.15846595524540                      | -2.89564860587785 |  |
| Н            | 2.07549151737177  | -1.44588771683672                      | -1.94991208465585 |  |
| Н            | 3.92365019539597  | -1.80582034826846                      | -0.44547647088444 |  |
| Н            | 4.54019443192503  | -3.42500187747955                      | -0.75269938462058 |  |
| 0            | 4.00323192734929  | -5.97292834577465                      | -0.21153714152519 |  |
| 0            | 1.94272748110450  | -6.63265976026718                      | 1.00032043045813  |  |
| S            | 2.79306043218170  | -5.60831096405347                      | 0.46926485499949  |  |

#### References.

- 1 T. Stopka, L. Marzo, M. Zurro, S. Janich, E.-U. Würthwein, C. G. Daniliuc, J. Alemán and O. G. Mancheño, Angew. Chem. Int. Ed., 2015, 54, 5049–5053.
- 2 K. Okuma, A. Nojima, N. Matsunaga and K. Shioji, Org. Lett., 2009, 11, 169–171.
- 3 M. Matsui, Y. Miyamoto, K. Shibata and Y. Takase, Bull. Chem. Soc. Jpn., 1984, 57, 603–604.
- 4 X.-Q. Zhu, Z. Dai, A. Yu, S. Wu and J.-P. Cheng, J. Phys. Chem. B, 2008, 112, 11694–11707.
- 5 M. Bhanuchandra, H. Yorimitsu and A. Osuka, Org. Lett., 2016, 18, 384–387.
- 6 J. C. Dyer and S. A. Evans, J. Org. Chem., 1980, 45, 5350–5355.
- 7 D. T. Hogan, Z. Dubrawski, B. S. Gelfand and T. C. Sutherland, Eur. J. Org. Chem., 2022, 2022, e202100913.
- 8 H. Kloosterziel and H. J. Backer, *Recl. Trav. Chim. Pays-Bas*, 1952, **71**, 361–372.