Unveiling the Double Triplet Nature of the 2Ag State in Conjugated Stilbenoid Compounds to Achieve Efficient Singlet Fission

Letizia Mencaroni,^a Martina Alebardi,^a Fausto Elisei,^a Irena Škorić,^b Anna Spalletti,^a Benedetta Carlotti^{*,a}

^a Department of Chemistry, Biology and Biotechnology, University of Perugia, via elce di sotto 8, 06123 Perugia, Italy.

^b Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia.

ELECTRONIC SUPPORTING INFORMATION

Table of contents

- 1. Experimental section
- 2. Spectral and fluorescence properties
- 3. Triplet properties
- 4. Ultrafast spectroscopy
- 5. Phosphorescence measurements
- 6. Quantum mechanical calculations

1. Experimental section

Materials and methods

Chemicals. The investigated compounds were synthesized according to the procedures described in previous papers.^{1–4} Spectral and photophysical properties were recorded in many solvents with spectroscopic grade: Perfluorohexane (PFHx, Sigma-Aldrich), 2-Methylbutane (IP, Sigma-Aldrich), Hexane (Hx, Sigma-Aldrich), 3-Methypentane (3-MP, Sigma-Aldrich), methylcyclohexane (MeCH, Sigma-Aldrich), Decahydronaphtalene (DHN, Sigma-Aldrich), Toluene (Tol, Sigma-Aldrich), Anisole (An, Sigma-Aldrich), Dimethylsulfoxide (DMSO, Carlo Erba), Bromonaphtalene (BrN, Sigma-Aldrich) and Diiodomethane (DIM, Sigma-Aldrich).

Photophysical characterization. Stationary absorption measurements were carried out by a Varian Cary 1 UV-Visible spectrophotometer. A FluoroMax-4P spectrofluorimeter by HORIBA scientific operated by FluorEssence and a FS5 Spectrofluorimeter by Edinburgh Instruments operated by Fluoracle software were used instead for excitation and emission fluorescence spectra at room temperature. Air-equilibrated dilute solutions (absorbance < 0.1 at the excitation wavelength) were used for the fluorimetric measurements. The fluorescence quantum yields (Φ_F , experimental error ± 10% and 20% when $\Phi_F \le 10^{-4}$) were obtained by employing tetracene ($\Phi_F = 0.17$ in air-equilibrate cyclohexane) and 9,10-diphenylanthracene ($\Phi_F = 0.73$ in air-equilibrated cyclohexane) as reference compounds,⁵ taking also into account the different refractive indexes of the used solvents.

Triplet properties were measured by laser flash photolysis (Edinburgh LP980) at 355 nm (third harmonic of a Continuum Surelite II Nd:YAG laser, Spectra Physics) with nanosecond time-resolution (pulse width 7 ns and laser energy < 1 mJ per pulse) coupled with a PMT for signal detection. The excitation at 355 nm was the pump-pulse while a pulsed xenon lamp was used to probe the absorption properties of the produced excited states. The experimental setup was calibrated by an optical matched solution of benzophenone (Bz) in MeCN (Φ_T = 1 and ϵ_T = 6500 M⁻¹ cm⁻¹ at 520 nm).⁶ Triplet–triplet absorption coefficients (ϵ_T) were retrieved from previous investigations.^{4,7,8} The triplet quantum yields, Φ_T , were determined (estimated uncertainty of ±15%) by an

actinometry approach considering Bz or thioxanten-9-one (TX) in AcCN ($\Phi_T = 0.66^9$ and $\varepsilon_T = 30000 M^{-1} cm^{-1} at \lambda_T = 630 nm)^{10}$ and anthracene (A) in CH ($\Phi_T = 0.71$ and $\varepsilon_T = 45500 M^{-1} cm^{-1} at \lambda_T = 422 nm)^6$ as references. All measurements were performed by purging the sample with pure molecular nitrogen. The study of the concentration effect on Φ_T was intrinsically limited by the experimental technique itself. Therefore, a narrow range of concentrations (corresponding to absorbances: $A_{355} \approx 0.1$, 0.5 up to $A_{355} = 1$) could be analyzed. The detailed methodologies concerning the determination of the triplet extinction coefficient and the quantum yield, jointly to its concentration dependence, have been extensively discussed in the Supporting Information of Ref ¹¹.

The experimental setup for ultrafast transient absorption experiments have been previously reported.^{12–15} The 400 nm excitation pulses (*ca*. 60 fs) were generated by an amplified Ti:Sapphire laser system (Spectra Physics). The Helios transient absorption spectrometer (Ultrafast Systems) is characterized by a temporal resolution of about 150 fs and a spectral resolution of 1.5 nm. A small portion of the 800-nm light passes through an optical delay line (time window of 3200 ps) and is focused onto a Sapphire crystal (2 mm thick) to generate a white-light in the 450-800 nm spectral range (probe pulse). All measurements were carried out under the magic angle in 2 mm cell at an absorbance of about 0.5 at 400 nm (concentration $\approx 2 \times 10^{-4}$ M). The solution was stirred during the experiments to avoid photoproduct interferences. Photodegradation was checked recording the absorption spectra before and after the time-resolved measurements, where no significant change was observed. The experimental 3D data matrices were firstly analyzed performing the Global Analysis by Surface Xplorer PRO (Ultrafast Systems) software, and successively through GloTarAn software in order to obtain the Evolution-Associated Spectra (EAS) considering a consecutive kinetic model. The statistical uncertainties on the transient lifetimes provided by the fitting were found to be ca. 10%.

Quantum mechanical calculations. Quantum mechanical calculations were performed by using the Gaussian 16 package.¹⁶ DFT with the CAM–B3LYP functional was chosen as the method to optimize the ground state geometry of these small organic push-pull systems and to derive their properties.¹⁷ In contrast the lowest singlet excited states were investigated using TD–DFT excited-state calculations with the CAM–B3LYP functional. Every calculation was submitted using 6–31+G(d,p) as the basis set including the solvent effect (CH) according to the conductor-like polarizable continuum model (CPCM).¹⁸

2. Spectral and fluorescence properties

Figure ESI.1. Normalized absorption (left) and emission (right) spectra of 2,5-(PhBu)₂T in solvents of different polarizability.

Table ESI.1. Spectral and fluorescence properties of **2,5-(PhBu)**₂**T** in solvents of different polarizability. The main absorption/emission maximum is in bold; sh means shoulder.

2,5-(PhBu)₂T	2,5-(PhBu)₂T n ε		λ_{abs} / nm	λ_{em} / nm
IP	1.3540	1.8275	369 ^{sh} 392 415 440	474 ^{sh} 514 ^{sh} 557 598 647 ^{sh}
MeCH-3MP (9/1)	1.3812	2.0075	373 ^{sh} 398 420 445	474 ^{sh} 516 561 598 649 ^{sh}
DMSO	1.4793 46.68		381 ^{sh} 406 430 456	
Tol	1.49693	2.379	379 ^{sh} 404 426 451	
BrN	1.6570	4.768	387 ^{sh} 413 438 465	472 ^{sh} 510 ^{sh} 534 567 619 ^{sh}

Figure ESI.2. Normalized absorption (left) and emission (right) spectra of D2TO in solvents of different polarizability.

Table ESI.2. Spectral and fluorescence properties of **D2TO** in solvents of different polarizability. The main absorption/emission maximum is in bold; sh means shoulder.

D2TO	n	3	λ_{abs} / nm	λ_{em} / nm
			350 ^{sh}	498 ^{sh}
ID	1 2540	1 9775	370	536
	1.5540	1.0275	391	577
			414	623 ^{sh}
			356 ^{sh}	502 ^{sh}
	1 3812	2 0075	376	541
	1.5012	2.0075	396	579
			420	625 ^{sh}
	1.4793	46.68	363 ^{sh}	
DMSO			385	
DIVISO			405	
			431	
			361 ^{sh}	
Tol	1 /0603	2 3 70	382	
	1.49095	2.575	403	
			427	
			370 ^{sh}	508 ^{sh}
BrN	1 6570	1 768	392	548
	1.0570	4.708	414	587
			440	635 ^{sh}

Figure ESI.3. Normalized absorption (left) and emission (right) spectra of 1NPH in solvents of different polarizability.

Table ESI.3. Spectral and fluorescence properties of **1NPH** in solvents of different polarizability. The main absorption/emission maximum is in bold; sh means shoulder.

1NPH	n	3	λ_{abs} / nm	λ_{em} / nm
IP	1.3540	1.8275	356 371 392 ^{sh}	444 ^{sh} 473 501 539 ^{sh}
MeCH-3MP (9/1)	1.3812	2.0075	359 371 396 ^{sh}	445 ^{sh} 472 501 538 ^{sh}
DMSO	1.4793	46.68	367 383 404 ^{sh}	
Tol	1.49693	2.379	366 378 401 ^{sh}	
BrN	1.6570	4.768	373 388 413 ^{sh}	450 ^{sh} 480 508 ^{sh} 550 ^{sh}

Figure ESI.4. Normalized absorption (left) and emission (right) spectra of DF in solvents of different polarizability.

Table ESI.4.	Spectral	and	fluorescence	properties	of	DF	in	solvents	of	different	polarizability.	The	main
absorption/er	mission m	axim	um is in bold.										

DF	n	З	λ_{abs} / nm	λ_{em} / nm
IP	1.3540	1.8275	349 363 383	
MeCH-3MP (9/1)	1.3812	2.008	353 368 389	479
DHN	1.4758	2.154	357 372 393	468
Tol	1.49693	2.379	375	488
Tol/An 9:1	1.4989	2.574	376	464
Tol/An 7:3	1.5031	2.964	377	492
Tol/An 5:5	1.5073	3.355	379	509
An	1.5179	4.330	382	521
BrN	1.6570	4.768	390	541

Figure ESI.5. Absorption spectra of compound DF in Tol as a function of concentration.

Sample	Solvent n Φ		Φ_{F}	$\tau_{\rm F}$ / ns	k _F / s ^{−1}
	IP	1.3540	0.0006	0.305	2.0×10 ⁶
2 5-(PhBu) ₂ T	MeCH/3-MP 9:1	1.3812	0.0012ª	0.290ª	4.1×10 ⁶
2,5 (1150)21	DMSO	1.4793	0.0021	0.510	4.1×10 ⁶
	Tol	1.49693	0.0028	0.295 ^b	9.5×10 ⁶
	BrN	1.6570	0.0046	0.650	7.1×10 ⁶
D2TO	MeCH/3-MP 9:1	1.3812	0.003	0.958	3.1×10 ⁶
	Tol	1.49693	0.007	1.07	6.5×10 ⁶

Table ESI.5. Fluorescence properties of 2,5-(PhBu)₂T and D2TO in solvents of different polarizability.

^aFrom ref. 2

^bFrom Femtosecond Transient Absorption measurements

3. Triplet properties

Figure ESI.6. Triplet transient absorption spectra obtained in N_2 -purged solutions of **2,5-(2TE)₂T** in solvents of different polarizability.

Solvent	Φ _T (N ₂)	λ_{T}/nm	τ _т (air)/ μs	τ _т (N ₂)/ μs	k _T / 10 ⁷ s ⁻¹
Hx/PFHx	0.09	520	0.074	5.60	4.3
IP	0.09	510	0.478	7.03	5.0
DMSO	0.18	545	0.590	8.10	9.5
Tol	0.14	540	0.019	6.29	7.8
BrN	0.19	550	0.890	7.03	12.7

Table ESI.6. Triplet properties of 2,5-(2TE)₂T in solvents of different polarizability.

Figure ESI.7. Triplet transient absorption spectra obtained in N₂-purged solutions of **1NPH** in IP, Tol and DMSO.

Table ESI.7. Triplet properties of 1NPH in solvents of different polarizability.

Solvent	Φ _T (N ₂)	λ _τ /nm	τ _т (N ₂)/ μs	k _⊤ /10 ⁷ s ⁻¹
IP	0.01	470	1.68	0.088
DMSO	0.01	490	18.9	0.087
Tol	0.02	490	14.5	0.204

4. Ultrafast Spectroscopy

Figure.ESI.8. Femtosecond Transient Absorption measurements of compound **2,5-(PhBu)**₂**T** in Tol: experimental 3D data matrix (panel A); main time-resolved absorption spectra (panel B) and representative kinetics recorded at significant wavelengths (inset); Evolution Associated Spectra (EAS) obtained by Global Analysis.

Table ESI.8	. Femtosecond	transient	absorption	and flu	orescence	up (conversion	measurements	of	compound
2,5-(PhBu)₂	T in solvents of	different	polarizabilit	у.						

Solvent	τ _{τΑ} / ps	τ _{FUC} / ps	Assignment
	0.63	0.31	Solv./ <mark>B</mark> u
סו	55	30	SR
IF	280	305	Ag
	Inf		T ₁
	0.30	0.35	Solv./ B _u
	67	67	SR
	260	240	Ag
	Inf		T ₁
	0.52	0.64	Solv./ <mark>B</mark> u
DMSO	8.2	8.8	SR
DIVISO	290	250	Ag
	Inf		T ₁
	0.37	0.32	Solv./ B _u
Tal	84	9.0	VC
101	295	82	Ag
	Inf		T ₁

	0.84	0.96	Solv./ B _u
DrN	70	25	SR
DIN	315	400	Ag
	Inf		T ₁

Figure.ESI.9. Femtosecond Transient Absorption measurements of compound **D2TO** in Tol: experimental 3D data matrix (panel A); main time-resolved absorption spectra (panel B) and representative kinetics recorded at significant wavelengths (inset); Evolution Associated Spectra (EAS) obtained by Global Analysis.

Table ESI.9. Femtosecond transient absorption and fluorescence up conversion measurements of compound **D2TO** in solvents of different polarizability.

Solvent	τ_{TA} / ps	τ _{FUC} / ps	Assignment
	0.75		Solv./ <mark>B</mark> u
IP	45		VC
	955		Ag
	0.36	0.28	Solv./ <mark>B</mark> u
MeCH/3MP	74	74	VC
	900	1000	Ag
	0.63	0.32	Solv./ B _u
DMSO	270	205	VC
	1140	1000	A _g
	0.86	0.32	Solv./ <mark>B</mark> u
Tal	85	90	VC
101	1000	840	Ag
	Inf		T ₁
BrN	0.78	0.46	Solv./ B

115	72	VC
1000	690	Ag
Inf		T ₁

Figure.ESI.10. Femtosecond Transient Absorption measurements of compound **1NPH** in Tol: experimental 3D data matrix (panel A); main time-resolved absorption spectra (panel B) and representative kinetics recorded at significant wavelengths (inset); Evolution Associated Spectra (EAS) obtained by Global Analysis.

Solvent	τ _{TA} / ps	τ _{FUC} / ps	Assignment
	0.32	0.48	Solv./ B _u
IP	33	32	VC
	9400	9400	Ag
	Inf		T ₁
	0.21	1.8	Solv./ B _u
	67	71	VC
MIECH/SIMP	11000	6700	Ag
	Inf		T ₁
	0.67		Solv./ <mark>B</mark> u
DMSO	255		VC
DIVISO	11500		Ag
	Inf		T ₁
Tol	0.25		Solv./ B _u
101	70		VC

Table ESI.10. Femtosecond transient absorption and fluorescence up conversion measurements of compound**1NPH** in solvents of different polarizability.

	12000		Ag
	Inf		T ₁
BrN	0.64	0.64	Solv./ B _u
	205	440	VC
	12000	12000	Ag
	Inf		T ₁

Figure.ESI.11. Femtosecond Fluorescence Up-Conversion measurements of compound **2,5-(2TE)**₂**T** in Tol: experimental 3D data matrix (panel A); main time-resolved absorption spectra (panel B) and representative kinetics recorded at significant wavelengths (inset); Decay Associated Spectra (DAS) obtained by Global Analysis.

Table ESI.11. Femtosecond transient absorption and fluorescence up conversion measurements of compound 2,5-(2TE)₂T in solvents of different polarizability.

Solvent	τ _{TA} / ps	τ _{FUC} / ps	Assignment
	0.44	0.58	Solv./B _u
	42	34	SR
	2100	2100	Ag
	Inf		T ₁
	0.93	0.50	Solv./B _u
IP	29	25	SR
	1400	1100	Ag
	Inf		T ₁
	0.64	0.64	Solv./B _u
	10	8.8	Solv.
DMSO	140	250	SR
	1900	1900	Ag
	Inf		T ₁
	0.24	0.32	Solv. / B _u
	6.9	9.0	Solv.
Tol	72	82	SR
	1800	1800	Ag
	Inf		T ₁
	0.76	0.45	Solv.
	6.0	6.3	Solv.
BrN	120	240	SR
	1500	1500	Ag
	Inf		T ₁

Figure.ESI.12. Femtosecond Fluorescence Up-Conversion measurements of compound **PN** in Tol: experimental 3D data matrix (panel A); main time-resolved absorption spectra (panel B) and representative kinetics recorded at significant wavelengths (inset); Decay Associated Spectra (DAS) obtained by Global Analysis.

Solvent	τ _{τΑ} / ps	Assignment
Tol	0.36 1.3 12 365 Inf	Solv./B _u Solv. SR A _g T ₁
Tol/An 7:3	0.66 14 380 Inf	Solv./B _u SR A _g T ₁
Tol/An 1:1	0.54 5.7 85 400 Inf	Solv./B _u SR ICT A _g T ₁
Tol/An 3:7	1.0 10 200 Inf	Solv./B _u SR ICT T ₁
Anª	1.8 8.7 360 Inf	Solv./B _u SR ICT T ₁
DMSO	0.60 4.2 92 1500	Solv./ <mark>B</mark> u Solv. SR ICT

Table ESI.12. Femtosecond transient absorption and fluorescence up conversion measurements of compound**PN** in solvents of different polarizability.

^a from ref.¹⁹

Figure.ESI.13. Femtosecond Fluorescence Up-Conversion measurements of compound **DF** in Tol: experimental 3D data matrix (panel A); main time-resolved absorption spectra (panel B) and representative kinetics recorded at significant wavelengths (inset); Decay Associated Spectra (DAS) obtained by Global Analysis.

Table ESI.13. Femtosecond transient absorption and fluorescence up conversion measurements of compound**DF** in solvents of different polarizability.

Solvent	τ _{τΑ} / ps	τ _{FUC} / ps	Assignment
	0.20		Solv. / B _u
	3.9		Solv. / VC
IVIECT/3-IVIP	33		Ag
	Inf		T ₁
	0.25		Solv. / B _u
DUN	7.6		Solv. / VC
DHN	58		Ag
	Inf		T ₁
	0.86	0.79	Solv. / B _u
Tola	9.2	11	Solv. / VC
T OI"	89	90	Ag
	Inf		T ₁
	0.57		Solv. / B _u
	7.5		Solv. / VC
10I/An 9:1	49		A _g (little ICT)
	Inf		T ₁
	0.49		Solv. / B _u
	7.1		Solv. / VC
TOI/AN 7.3	64		A _g mixed with ICT
	Inf		T ₁
	1.8		Solv. / B _u
Tol/An FiFa	5.4		Solv. / VC
10I/An 5:5°	80		A _g mixed with ICT
	Inf		T ₁
	0.89		Solv. / B _u
A	7.2		Solv. / VC
An	320		ICT
	Inf		T ₁
	0.94		Solv.
BrN	250		B _u
	Inf		T ₁
	0.46		Solv. / B _u
	2.8		Solv.
DMSO ^a	84		VC (ICT)
	1820		ICT
	Inf		T ₁

^a from ref. ⁷

Table ESI.14. Comparison between T_1 (green) and 2Ag (blue) ESA band as obtained by fs-TA experiments in the nanosecond and femtosecond regime for **2,5-(2TE)**₂**T** in solvents of different polarizability. $\Delta\lambda$ and Δ E relate to the T_1 spectral profile and 2Ag spectrum as obtained by fs-TA experiments.

Solvent	λ_{T1} / nm	λ_{T1}/nm	λ_{2Ag}/nm	Δλ/nm	ΔE / cm ⁻¹	ΔE /eV	Φ_{T}
	(ns-TA)	(fs-TA)	(fs-TA)				
Hx/PFHx	510	510	529	19	704	0.087	0.09
IP	510	513	533	20	731	0.091	0.09
DMSO	540	531	550	21	651	0.081	0.18
Tol	540	539	550	11	371	0.046	0.14
BrN	550	558	566	8	253	0.031	0.19

Figure.ESI.14. Comparison between T_1 ESA spectra as obtained by ns-TA (black, scattered-line) and by fs-TA (green line) experiments and $2A_g$ ESA spectra as obtained by fs-TA experiments (blue) for compounds **D2TO** (left) and **2,5-(PhBu)₂T** (right) in Tol.

Figure.ESI.15. Linear fitting of the $k_{TT}=1/\tau_{Ag}$ in function of the $1/\Delta E$, from the data reported in **Table 5** of the main paper. The ΔE are obtained from the difference between fs-TA ESA spectra of the 2Ag and T₁ states. The lifetimes of the Ag state are obtained from the fitting of fs-TA measurements.

5. Phosphorescence measurements

Figure.ESI.16. Comparison between emission and excitation spectra of **DF** recorded at 77 K in MeCH-3MP matrix with different excitation sources.

Figure.ESI.17. Phosphorescence kinetic at 670 nm of **DF** recorded at 77 K in MeCH/3-MP matrix excited by 25 Hz pulsed lamp.

6. Quantum mechanical calculations

Figure ESI.18. Optimized S_0 geometry of compound **2,5-(PhBu)₂T.** Model: CAM-B3LYP/6-31+G(d,p) @ S_0 in cyclohexane.

Table ESI.15. Absorption and emission wavelengths (λ), oscillator strength (f) and molecular orbitals of **2,5-(PhBu)**₂**T** in cyclohexane (CPCM) calculated by the CAM-B3LYP/6-31+G(d,p)//CAM-B3LYP/6-31+G(d,p) model, together with the experimental absorption and emission maxima.

Transition	λ _{th} /nm	f	MO	%	λ _{exp} /nm
S₀→T₁	1016	0.0000	$\pi_H \rightarrow \pi_L^*$	86	
S₀→T₂	648	0.0000	$\pi_{H-1} \rightarrow \pi_L^*$	39	
			$\pi_H \rightarrow \pi_{L+1}^*$	46	
S₀→T₃	437	0.0000	$\pi_{H-2} \rightarrow \pi_L^*$	27	
			$\pi_{H-1} \rightarrow \pi_{L+1}^*$	24	
			$\pi_H \rightarrow \pi_{L+2}^*$	23	
S₀→S₁	425	2.7004	$\pi_H \rightarrow \pi_L^*$	92	420*
S₀→T₄	368	0.0000	$\pi_{H-2} \rightarrow \pi_{L+1}^*$	19	
			$\pi_H \rightarrow \pi_{L+10}^*$	21	
S₀→T₅	322	0.0000	$\pi_{H-7} \rightarrow \pi_L^*$	14	
			$\pi_{H-6} \rightarrow \pi_{L+1}^*$	11	
			$\pi_{H-4} \rightarrow \pi_{L+4}^*$	11	
			$\pi_{H-3} \rightarrow \pi_{L+3}^*$	15	
S₀→S₂	321	0.0042	$\pi_H \rightarrow \pi_{L+1}^*$	67	
S₀→T ₆	312	0.0000	$\pi_{H-5} \rightarrow \pi_L^*$	49	
S₀→T ₇	295	0.0000	$\pi_{H-5} \rightarrow \pi_L^*$	25	
S₀→T ₈	290	0.0000	$\pi_{H-1} \rightarrow \pi_L^*$	15	
			$\pi_H \rightarrow \pi_{L+1}^*$	19	
			$\pi_H \rightarrow \pi_{L+3}^*$	15	
S₀→T9	288	0.0000	$\pi_{H-1} \rightarrow \pi_{L+3}^*$	21	
			$\pi_H \rightarrow \pi_{L+4}^*$	18	
S₀→T₁₀	286	0.0000	$\pi_{H-4} \rightarrow \pi_{L+1}^*$	13	
			$\pi_{H-3} \rightarrow \pi_L^*$	13	
			$\pi_{H-1} \rightarrow \pi_{L+4}^*$	11	
			$\pi_H \rightarrow \pi_{L+1}^*$	11	
S₀→S₃	284	0.0019	$\pi_{H-1} \rightarrow \pi_L^*$	63	
S₀→S₄	264	0.2594	$\pi_H \rightarrow \pi_{L+2}^*$	47	

S₀→S₅	257	0.0060	$\pi_H \rightarrow \pi_{L+3}^*$	37	
S₀→S ₆	254	0.1412	$\pi_{H-4} \rightarrow \pi_L^*$	16	
			$\pi_H \rightarrow \pi_{L+4}^*$	23	
S₀→S ₇	253	0.0005	$\pi_H \rightarrow \pi_{L^{+6}}^*$	60	
S₀→S ₈	249	0.0896	$\pi_{H-5} \rightarrow \pi_L^*$	74	
S₀→S9	244	0.0000	$\pi_H \rightarrow \pi_{L+5}^*$	74	
S ₀ → S ₁₀	243	0.0186	$\pi_{H-2} \rightarrow \pi_L^*$	38	
			$\pi_H \rightarrow \pi_{L+2}^*$	30	
S ₁ →S ₀	552	2.7326	$\pi_H \rightarrow \pi_L^*$	96	561*

*From the spectra recorded in MeCH/3-MP 9:1

 $\pi_{\text{H-1}}$

 $\pi_{
m H}$

 π_{L}

 π_{L+1}

Figure ESI.19. Frontier molecular orbitals of 2,5-(PhBu)₂T.

Figure ESI.20. Effect of the $S_0 \rightarrow S_1$ transition on the electron density of **2,5-(PhBu)₂T**; increase and decrease of electron densities are represented by blue (+0.00007) and red (-0.00007), respectively.

Figure ESI.21. Optimized S₀ geometry of compound **D2TO**. Model: CAM-B3LYP/6-31+G(d,p) @ S₀ in cyclohexane.

Table ESI.16. Absorption and emission wavelengths (λ), oscillator strength (f) and molecular orbitals of **D2TO** in cyclohexane (CPCM) calculated by the CAM-B3LYP/6-31+G(d,p)//CAM-B3LYP/6-31+G(d,p) model, together with the experimental absorption and emission maxima.

Transition	λ _{th} /nm	f	MO	%	λ _{exp} /nm
S₀→T₁	1196	0.0000	$\pi_H \rightarrow \pi_L^*$	99	
S ₀ →T ₂	576	0.0000	$\pi_{H-1} \rightarrow \pi_L^*$	45	
			$\pi_{H} \rightarrow \pi_{L+1}^{*}$	43	
S₀→T₃	411	0.0000	$\pi_{H-4} \rightarrow \pi_L^*$	31	
			$\pi_{H-1} \rightarrow \pi_{L+1}^*$	28	
			$\pi_{H} \rightarrow \pi_{L+5}^{*}$	27	
S₀→S₁	410	2.5046	$\pi_H \rightarrow \pi_L^*$	94	396*
S₀→T₄	329	0.0000	$\pi_{H-5} \rightarrow \pi_L^*$	26	
S₀→T₅	301	0.0000	$\pi_{H-3} \rightarrow \pi_{L+1}^*$	34	
			$\pi_{H-2} \rightarrow \pi_L^*$	43	
S₀→S₂	301	0.0000	$\pi_{H-1} \rightarrow \pi_L^*$	46	
			$\pi_H \rightarrow \pi_{L+1}^*$	48	
S₀→T ₆	301	0.0000	$\pi_{H-3} \rightarrow \pi_L^*$	48	
S₀→T ₇	281	0.0000	$\pi_{H-1} \rightarrow \pi_L^*$	43	
			$\pi_H \rightarrow \pi_{L+1}^*$	45	
S₀→T ₈	276	0.0000	$\pi_{H-6} \rightarrow \pi_L^*$	23	
S₀→S₃	275	0.0000	$\pi_{H-1} \rightarrow \pi_L^*$	46	
			$\pi_H \rightarrow \pi_{L+1}^*$	44	
S₀→T9	250	0.0000	$\pi_H \rightarrow \pi_{L+12}^*$	28	
S₀→T₁₀	246	0.0000	$\pi_H \rightarrow \pi_{L+3}^*$	37	
			$\pi_{H} \rightarrow \pi_{L+4}^{*}$	47	
S₀→S₄	244	0.3104	$\pi_{H-2} \rightarrow \pi_L^*$	55	
S₀→S₅	244	0.0001	$\pi_{H} \rightarrow \pi_{L+4}^{*}$	54	
S₀→S ₆	242	0.0000	$\pi_{H-3} \rightarrow \pi_L^*$	67	
S₀→S ₇	241	0.0075	$\pi_H \rightarrow \pi_{L+6}^*$	44	
S₀→S ₈	235	0.0000	$\pi_{H} \rightarrow \pi_{L+2}^{*}$	56	
S ₀ →S ₉	230	0.0031	$\pi_H \rightarrow \pi_{L+3}^*$	36	
			$\pi_H \rightarrow \pi_{L+4}^*$	31	
$S_0 \rightarrow S_{10}$	230	0.0428	$\pi_{H-4} \rightarrow \pi_L^*$	60	
S₁→S₀	534	2.5856	$\pi_H \rightarrow \pi_L^*$	97	579*

*From the spectra recorded in MeCH/3-MP 9:1

Figure ESI.22. Frontier molecular orbitals of D2TO.

Figure ESI.23. Effect of the $S_0 \rightarrow S_1$ transition on the electron density of **D2TO**; increase and decrease of electron densities are represented by blue (+0.00008) and red (-0.00008), respectively.

Figure ESI.24. Optimized S₀ geometry of compound **1NPH**. Model: CAM-B3LYP/6-31+G(d,p) @ S₀ in cyclohexane.

Table ESI.17. Absorption and emission wavelengths (λ), oscillator strength (f) and molecular orbitals of **1NPH** in cyclohexane (CPCM) calculated by the CAM-B3LYP/6-31+G(d,p)//CAM-B3LYP/6-31+G(d,p) model, together with the experimental absorption and emission maxima.

Transition	λ _{th} /nm	f	MO	%	λ _{exp} /nm
S₀→T₁	833	0.0000	$\pi_H \rightarrow \pi_L^*$	84	
S₀→T₂	509	0.0000	$\pi_{H-1} \rightarrow \pi_L^*$	34	
			$\pi_H \rightarrow \pi_{L+1}^*$	34	
S ₀ →T ₃	400	0.0000	$\pi_{H-4} \rightarrow \pi_L^*$	25	
			$\pi_{H-1} \rightarrow \pi_{L+1}^*$	21	
S₀→S₁	366	2.0698	$\pi_H \rightarrow \pi_L^*$	94	359*
S₀→T₄	328	0.0000	$\pi_{H-5} \rightarrow \pi_L^*$	14	
			$\pi_{H-2} \rightarrow \pi_{L+3}^*$	13	
S₀→T₅	309	0.0000	$\pi_{H-2} \rightarrow \pi_L^*$	21	
			$\pi_{H-2} \rightarrow \pi_{L+1}^*$	22	
			$\pi_{H-1} \rightarrow \pi_{L+2}^*$	20	
			$\pi_H \rightarrow \pi_{L+2}^*$	21	
S₀→T ₆	298	0.0000	$\pi_{H-3} \rightarrow \pi_{L+3}^*$	19	
$S_0 \rightarrow T_7$	292	0.0000	$\pi_{H-2} \rightarrow \pi_{L}^{*}$	23	
			$\pi_{H-2} \rightarrow \pi_{L+1}^*$	24	
			$\pi_{H-1} \rightarrow \pi_{L+2}^*$	21	
			$\pi_H \rightarrow \pi_{L+2}^*$	25	
S ₀ →S ₂	288	0.0777	$\pi_{H-1} \rightarrow \pi_L^*$	40	
			$\pi_H \rightarrow \pi_{L+1}^*$	50	
S₀→T ₈	287	0.0000	$\pi_{H-3} \rightarrow \pi_L^*$	19	
			$\pi_H \rightarrow \pi_{L+3}^*$	21	
S₀→S₃	277	0.0000	$\pi_{H-2} \rightarrow \pi_L^*$	25	
			$\pi_{H-2} \rightarrow \pi_{L+1}^*$	21	
			$\pi_{H-1} \rightarrow \pi_{L+2}^*$	21	
			$\pi_{H} \rightarrow \pi_{L+2}^{*}$	28	
S₀→T9	275	0.0000	$\pi_{H-2} \rightarrow \pi_{L+2}^*$	79	
S₀→T₁₀	270	0.0000	$\pi_{H-4} \rightarrow \pi_{L+3}^*$	11	
			$\pi_{H-3} \rightarrow \pi_{L+3}^*$	11	
$S_0 \rightarrow S_4$	263	0.0014	$\pi_{H-1} \rightarrow \pi_L^*$	49	
			$\pi_H \rightarrow \pi_{L+1}^*$	38	
S₀→S₅	255	0.0112	$\pi_H \rightarrow \pi_{L+3}^*$	36	
S₀→S ₆	243	0.0193	$\pi_{H-1} \rightarrow \pi_{L+1}^*$	35	

S₀→S ₇	233	0.5411	$\pi_{H-2} \rightarrow \pi_L^*$	25	
			$\pi_H \rightarrow \pi_{L+2}^*$	32	
S₀→S ₈	231	0.1412	$\pi_H \rightarrow \pi_{L+4}^*$	18	
			$\pi_H \rightarrow \pi_{L+5}^*$	20	
S₀→S9	228	0.0222	$\pi_{H-4} \rightarrow \pi_L^*$	37	
S₀→S₁₀	226	0.0890	$\pi_H \rightarrow \pi_{L+5}^*$	28	
			$\pi_H \rightarrow \pi_{L+6}^*$	20	
S₁→S₀	496	2.1163	$\pi_H \rightarrow \pi_L^*$	97	472*

*From the spectra recorded in MeCH/3-MP 9:1

 $\pi_{L^{+1}}$

Figure ESI.25. Frontier molecular orbitals of 1NPH.

 π_{L}

Figure ESI.26. Effect of the $S_0 \rightarrow S_1$ transition on the electron density of **1NPH**; increase and decrease of electron densities are represented by blue (+0.00008) and red (-0.00008), respectively.

Figure ESI.27. Optimized S_0 geometry of compound 2,5-(2TE)₂T. Model: CAM-B3LYP/6-31+G(d,p) @ S_0 in cyclohexane.

Table ESI.18. Absorption and emission wavelengths (λ), oscillator strength (f) and molecular orbitals of **2,5-(2TE)**₂**T** in cyclohexane (CPCM) calculated by the CAM-B3LYP/6-31+G(d,p)//CAM-B3LYP/6-31+G(d,p) model, together with the experimental absorption and emission maxima.

Transition	λ _{th} /nm	f	MO	%	λ _{exp} /nm
S₀→T₁	911	0.0000	$\pi_H \rightarrow \pi_L^*$	90	
S₀→T₂	559	0.0000	$\pi_{H-1} \rightarrow \pi_L^*$	42	
			$\pi_H \rightarrow \pi_{L+1}^*$	44	
S₀→S₁	413	1.4416	$\pi_H \rightarrow \pi_L^*$	94	413*
$S_0 \rightarrow T_3$	400	0.0000	$\pi_{H-5} \rightarrow \pi_L^*$	29	
			$\pi_{H-1} \rightarrow \pi_{L+1}^*$	27	
			$\pi_H \rightarrow \pi_{L+3}^*$	28	
S₀→T₄	322	0.0000	$\pi_{H-4} \rightarrow \pi_L^*$	23	
S₀→T₅	312	0.0000	$\pi_{H-4} \rightarrow \pi_L^*$	53	
S ₀ →S ₂	304	0.2045	$\pi_{H-1} \rightarrow \pi_L^*$	45	
			$\pi_H \rightarrow \pi_{L+1}^*$	48	
S₀→T ₆	301	0.0000	$\pi_{H-3} \rightarrow \pi_{L+1}^*$	33	
			$\pi_{H-2} \rightarrow \pi_{L}^{*}$	44	
S₀→T7	300	0.0000	$\pi_{H-3} \rightarrow \pi_L^*$	46	
			$\pi_{H-2} \rightarrow \pi_{L+1}^*$	32	
S₀→T ₈	279	0.0000	$\pi_{H-1} \rightarrow \pi_{L}^{*}$	42	
			$\pi_{H} \rightarrow \pi_{L+1}^{*}$	41	
S₀→T9	273	0.0000	$\pi_{H-8} \rightarrow \pi_{L}^{*}$	22	
			$\pi_{H-6} \rightarrow \pi_{L+1}^*$	13	
			$\pi_{H-5} \rightarrow \pi_{L+3}^*$	12	
$S_0 \rightarrow S_3$	272	0.0000	$\pi_{H-1} \rightarrow \pi_{L}^{*}$	48	
	250	0.4020	$\pi_{H} \rightarrow \pi_{L+1}^{*}$	42	
$S_0 \rightarrow S_4$	256	0.1028	$\pi_{H-4} \rightarrow \pi_{L}^*$	85	
S₀→S₅	251	0.0764	$\pi_H \rightarrow \pi_{L+3}^*$	52	
S₀→T₁₀	248	0.0000	$\pi_{H} \rightarrow \pi_{L+7}^{*}$	35	
S₀→S ₆	243	0.0000	$\pi_H \rightarrow \pi_{L+2}^*$	73	
S₀→S ₇	243	0.0140	$\pi_{H-2} \rightarrow \pi_L^*$	60	
S₀→S ₈	242	0.2068	$\pi_{H-3} \rightarrow \pi_L^*$	65	
S₀→S ₉	241	0.0011	$\pi_H \rightarrow \pi_{L+7}^*$	35	
$S_0 \rightarrow S_{10}$	230	0.0000	$\pi_H \rightarrow \pi_{L+5}^*$	50	

S ₁ →S ₀	533	1.4613	π _H →π _L *	97	489*
				·	

*From the spectra recorded in Tol

Figure ESI.28. Frontier molecular orbitals of 2,5-(2TE)₂T.

Figure ESI.29. Effect of the $S_0 \rightarrow S_1$ transition on the electron density of **2,5-(2TE)_2T**; increase and decrease of electron densities are represented by blue (+0.00008) and red (-0.00008), respectively.

The quantum mechanical calculations on **DF** have already been reported in a previous paper.⁷

- 1 B. Carlotti, A. Cesaretti, G. Cacioppa, F. Elisei, I. Odak, I. Škorić and A. Spalletti, *Journal of Photochemistry and Photobiology A: Chemistry*, 2019, **368**, 190–199.
- 2 E. Marri, G. Galiazzo and A. Spalletti, *Photochem Photobiol Sci*, 2004, **3**, 205–210.
- 3 G. Bartocci, A. Spalletti, R. S. Becker, F. Elisei, S. Floridi and U. Mazzucato, J. Am. Chem. Soc., 1999, **121**, 1065–1075.
- 4 E. Marri, G. Galiazzo, F. Masetti, U. Mazzucato, C. Zuccaccia and A. Spalletti, *Journal of Photochemistry and Photobiology A: Chemistry*, 2005, **174**, 181–186.
- 5 M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, *Handbook of Photochemistry*, CRC Press, Boca Raton, 3rd edn., 2006.
- 6 I. Carmichael and G. L. Hug, *Journal of Physical and Chemical Reference Data*, 1986, **15**, 1–250.
- 7 L. Mencaroni, B. Carlotti, A. Cesaretti, F. Elisei, A. Grgičević, I. Škorić and A. Spalletti, *Photochem. Photobiol. Sci.*, 2020, **19**, 1665–1676.
- 8 G. Ginocchietti, G. Galiazzo, U. Mazzucato and A. Spalletti, *Photochem Photobiol Sci*, 2005, 4, 547–553.
- 9 X. Allonas, C. Ley, C. Bibaut, P. Jacques and J. P. Fouassier, *Chemical Physics Letters*, 2000, 322, 483–490.
- 10 A. Samanta, B. Ramachandram and G. Saroja, *Journal of Photochemistry and Photobiology A: Chemistry*, 1996, **101**, 29–32.
- 11 L. Mencaroni, B. Carlotti, F. Elisei, A. Marrocchi and A. Spalletti, Chem. Sci., 2022, 13, 2071–2078.
- 12 B. Carlotti, M. Poddar, F. Elisei, A. Spalletti and R. Misra, J. Phys. Chem. C, 2019, 123, 24362–24374.
- 13 T. D. Giacco, B. Carlotti, S. De Solis, A. Barbafina and F. Elisei, Phys. Chem. Chem. Phys., 2010, 12, 8062.
- 14 A. Mazzoli, A. Spalletti, B. Carlotti, C. Emiliani, C. G. Fortuna, L. Urbanelli, L. Tarpani and R. Germani, J. Phys. Chem. B, 2015, 119, 1483–1495.

- 15 W. Dai, T. Bianconi, E. Ferraguzzi, X. Wu, Y. Lei, J. Shi, B. Tong, B. Carlotti, Z. Cai and Y. Dong, ACS Materials Lett., 2021, 1767–1777.
- 16 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson and H. Nakatsuji, .
- 17 S. Tortorella, M. M. Talamo, A. Cardone, M. Pastore and F. De Angelis, J. Phys.: Condens. Matter, 2016, 28, 074005.
- 18 V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995–2001.
- 19 B. Carlotti, F. Elisei, U. Mazzucato and A. Spalletti, Phys. Chem. Chem. Phys., 2015, 17, 14740–14749.