Electronic Supplementary Information for

Radiation-induced transformations of matrix-isolated ethanol molecules at cryogenic temperatures: a FTIR study

Pavel V. Zasimov, Elizaveta V. Sanochkina, Daniil A. Tyurin, and Vladimir I. Feldman^{*} Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia

*Corresponding author, e-mail: <u>feldman@rad.chem.msu.ru</u> (V.F.)

Table S1 Main absorption maxima (cm⁻¹) of the C₂H₅OH and C₂D₅OH isolated molecules in the noble-gas matrices. Tentative assignments are in italic. Multiple features most probably are due to the effect of matrix site splitting.

Approximate assignment	Ne	Ar	Kr	Xe	Gas phase ^{S1}
î ^		C ₂ H ₅ OH			-
OH str	3679.7 _A	3660.2 _A	3666.5	3642.0	3676.1
	3677.4_{G}	3655.2_{G}	3650.0_{A}	3639.7sh	3667.1
			3646.6 _G		3658.6
					3656.2
CH _{3 a-str} A"	3000.6	3000.2	2994.6	2996.9	2989.4
	2994.7	2995.0	2989.2	2989.7	
	2990.0		2985.3		
CH _{3 a-str}	2985.7	2984.4	2981.1	2981.0	_
			2977.9		
CH _{3 s-str}	2955.0	2953.0	2948.2	2943.2	_
	2942.2	2938.9	2934.8	2928.5	
CH _{2 a-str} A"	2920.4	2917.1	2908.1	2903.4	2900.5
	2914.8	2912.6	2901.7		
CH _{2 s-str}	2902.7	2899.5	2896.5	2892.3	_
	2896.8	2889.0sh	2892.7	2885.8	
				2880.6sh	
CH _{2 scis}	1492.6	1487.2	1487.6	1482.9	—
			1484.1		
CH ₃ a-deform	1465.3	1463.3	1460.6	1456.8	1453.3
					1449.9
CH _{3 a-deform} A"	1449.0	1445.0	1443.3	1440.4	—
$CH_{2 wag}$	1427.0	1416.6	1415.9	1413.9	_
	1413.8				
CH _{3 s-deform}	1379.3	1371.5	1369.4	1367.4	1393.7
	1373.0				
OH deform	1253.2	1254.7	1251.1	1251.2	1241.3
	1241.3	1252.1	1237.6	1238.2	
		1239.5			
$CH_{2 \text{ rock}} + CH_{3 \text{ rock}} A''$	1159.3	1160.2	—	_	_
$CCO_{str} + CH_{3 rock}$	1103.0	1102.7	1101.5	1101.3	1089.2
	1091.0	1095.9	1094.6	1092.6	
	1072.8	1091.7	1089.5	1088.9	
		1083.5	1082.8	1082.5	
		1077.0		1074.7sh	
$CCO_{str} + CH_{3 rock}$	1028.2	1025.1	1030.6	1032.5sh	1037.6
54 5 FOR	1020.1	1016.6	1023.8	1031.5	1027.6
	1017.0sh	1009.3	1021.8	1027.1	
	1012.9		1015.8	1022.6sh	
CCO str	891.6 ₄	889.3 _A	898.2	898.4sh4	891.5
50	889.8 _G	886.4 _G	887.9 ₄	895.0 _G	883.0
	886.9shc	884.6sh _G	885.0 _G		879.4
		- U	882.5sh _G		
$CH_{2 \text{ rock}} + CH_{3 \text{ rock}} A''$	814.5	811.9	809.3	817.4	801.0

		C ₂ D ₂ OH			
OH	3686 7	3660.64	3666 5	3642.6	3676 1
	3680.0_{G}	3655.6_{C}	3649.9	3640 4sh	5670.1
	5000.00	2022.00	3646.9_{C}	5010.151	
$CD_2 \dots A''$	2252.0	2256.4	2251.6	2252.0	2233.6
	2232.0	2246.7	2231.0	2232.0	2233.0
	2240.4	2231.3	2239.6	2242.4	
	2236.0	220110	2231.8	2236.2	
				2232.7sh	
CD ₃ a str	2211.6	2208.1	2205.3	2206.4	_
5 a-su	2201.7				
$CD_{2} = A''$	2186.2	2194.3	2195.8	2171.2	2185.0
	2184.0	2191.0	2190.0sh	2170.6	
	2175.6		2186.1		
			2178.2		
CD _{3 s-str}	2142.8	2141.6	2137.8	2144.7	_
- 5530				2134.6	
CD _{2 s-str}	2126.4	2121.9	2120.5	2114.7	_
2.5.50	2123.9	2111.7	2118.8	2104.1	
	2111.6	2105.9	2107.4	2095.1	
	2106.2	2103.6	2101.2	2089.5	
	2102.9	2098.5	2093.5	2076.7	
	2096.0	2086.3	2084.2sh	2072.5	
	2084.2	2078.9	2081.0	2065.9	
	2080.3		2078.5sh		
			2076.5sh		
?	2033.5	2029.0sh	2022.8	2022.9	_
	2027.1	2026.7	2018.2	2017.2	
	2021.7	2022.1			
?	1316.3	1315.0	1316.5	1319.0sh	—
			1313.6	1314.3	
CD ₃ s-deform	1285.3	1276.5	—	1277.8	1286.2
	1279.2				
?	1192.0	1189.2	1166.3	1186.1	1185.0
	1182.8	1177.2sh	1163.3	1180.6	
	1180.6	1169.0			
	1166.5	1166.6			
	1111	1162.0	11.000	11.10.6	
$CD_{2 wag}$	1144.6	1143.3	1160.9	1143.6	1155.1
	1138.7sh	1136.1	1150.3	1128.4	1141.7
	1131.4	1129.2	1142.1	1124.9sh	1123.5
	1125.6	1121.2sn	1133.5	1114./	
	1118.68n	1118.2	1126.9		
	1114.8	1115.Ush	1119.0		
CD	1109.3	1007 7	1113.1	1004 5	1067 6
CD_3 a-deform	1091.3	1097.7	1090.3	1094.3	1007.0
	1000.0	1094.9 1071 2ah	1093.7	1070.0	1004.0
	1075.2	1071.281	1073.0	1000.1	
	1070.9	1000.4	1007.1	1001.4	
	1000.7	1004.4	1002.0		

CD _{2 scic}	1060.3	1057.1	1055.2	1055.6	1057.8
	1058.1		1053.9sh	1052.2	1053.8
				1050.9sh	
CD _{3 a-deform} A"	1051.4	1049.6	1048.4	1045.7	
$CH_{2 \text{ rock}} + CH_{3 \text{ rock}} A''$	984.7	981.4	980.4	_	—
	982.0	975.8	974.0		
	973.0	971.8	971.7		
OH deform	964.1	965.8	963.6	965.7	967.7
	959.7	961.2	959.4sh	963.2sh	965.7
	957.5sh			960.6	
				956.4	
$CCO_{str} + CD_{3 rock}$	922.0	920.4	919.3	904.8	902.7
	907.4	910.1	908.4	890.3	889.4
	905.5sh	905.0	902.3	887.0	882.6
	903.5sh	903.0	892.1		878.4
	894.8	892.2	886.5		
	889.6	887.7	881.6sh		
	884.3	883.2			
	881.7				
CCO str	744.4_{A}	742.8_{A}	745.8	749.9_{A}	744.0
52	741.0_{G}	739.2_{G}	742.4_{A}	743.4_{G}	
	5	2	738.3_{G}	~	

A-anti-conformer; G-gauche-conformer; sh-shoulder.

Table S2 Absorption maxima (cm⁻¹) of the species produced under X-ray radiolysis of the C₂H₅OH/Ng and C₂D₅OH/Ng 1:1000 (Ng = Ne, Ar, Kr, or Xe) samples. Tentative assignments are in italic.

Species	Assignment	Ne ^a	Ar	Kr	Xe	Ref.
			C ₂ H ₅ OH			
CH ₃ CHO	$2v_6$	_	2841.0	2842.9	2823.4	S2, S3
				2838.2	2822.0	
				2833.9		
	$v_5 + v_6$	_	—	_	2803.7	
	$v_5 + v_7 / v_7 + v_{12}$	2753.3	2751.1	2752.0	2743.2	
				2745.7		
	CH str	2719.8	2730.0	2725.6sh	2731.5	
		2716.7	2726.5	2723.4	2716.3sh	
			2719.5	2719.4sh	2713.8	
				2711.8		
	CO str	1733.5	1728.3	1740.8	1735.6	
		_	_	1726.4		
	CH _{3 d-deform}			_	1423.9	
					1419.9	
	CH _{3 s-deform}	1352.7	1352.5	1349.4	1345.5	
			1349.3	1347.0		
	CC str	1117.7	1123.9	1121.7	1122.7	
		1114.7	1120.3	1118.6	1116.1	
			1116.0	1113.8		
			1111.6	1109.9		
	CCO deform	509.6	515.2	516.8	515.4	
				515.1	512.1	
				510.3		
				505.7		
CH ₂ CHOH	OH str	3629.0	3625.4	3609.2	_	S2, S4, S5
			3621.2	3607.1		
			3616.7			
			3609.4			
	CC str	1669.0	1672.0	_	_	
		1666.8	1667.4			
		1665.4	1665.2			
		1662.7	1661.9			
	Mixed mode	1078.1	1079.2	1078.8		
	CH ₂ CH _{OPLA}	817.0	823.0	821.3	814.6sh	
			817.6	816.0	812.8	
					804.0	
$C_2H_2\cdots H_2O$	CH a-str	3252.2	3239.8	3234.0	_	S2, S6
		3247.8				
	OH bend	1598.9	1593.1	1591.1		
		1596.3sh		1588.2		
	CH a-bend	778.9sh	786.1	782.7		
		776.6				
		772.9				
		770.8				

CH ₂ CO'	CO_{atr}^{b}			1881.0	1880.2	S2, S5,
enjee				1847.7	1876.3	S2, S3, S7, S8
					1844.4	,
	CH _{3 deform}			1321.5	1318.4	
H ₂ CCO–H ₂	$CH_{2 \text{ s-str}}$	3078.2	3071.7	3066.6sh	3056.0	S2, S9
	<u>2</u> 3-3u		3069.8sh	3062.6	3052.5	~_,~~
			3067.7			
	CO str	2150.3	2148.1	2143.9	2139.3	
	$CH_{2 scis}$	1386.8	1381.7	1378.0	1375.0	
	CH _{2 rock-opla}	592.3	_	_	_	
	CO rock-opla	527.5	524.5			
H_2CCO	CH _{2 s-str}	3069.1	3062.8	3049.4	3040.7	S2, S7,
	CO _{str}	2150.3	2142.2	2139.8	2136.7	S10, S11
	CH _{2 scis}	1386.8	_	_	_	
	CH _{2 rock-opla}	592.3				
	CO rock-opla	527.5				
HCCO'	CCO deform	2023.9	2031.2	2028.1	2021.0sh	S2, S12, S13
		2018.6sh	2022.1	2026.1	2016.4	
		2015.4sh	2019.6sh	2019.6	2013.7sh	
CCO	CO str	1972.6	1973.5	1970.3	1966.5	S2, S14
		1967.2				
H_2CO	CH _{2 a-str}	—	2865.3	2854.1	—	S15–S17
	CH _{2 s-str}		2797.6	2787.6		
	CO str		1740.8	1738.8		
	CH _{2 scis}		1498.0	1494.3		
	$CH_{2 wag}$		1169.6	1166.5		
HCO'	CH str	2482.2	2481.3	2475.4	2444.8	S18-S20
			2478.3sh	2468.0		
	CO str	1866.2	1862.8	1861.9	1858.8	
				1859.7	1856.8	
	HCO deform	—	1086.2	1081.2	1076.3	
					1073.5	
CO	CO str	2143.5sh	2137.6	2135.7	2132.4	S7, S21
		2141.2			2130.9sh	
CH_4	CH _{3 d-str}	3020.3	3026.0	3019.3	3019.5	S22
			3020.8sh	3016.4	3012.5	
					3006.7	
	CH _{3 d-deform}	1308.7	1305.6	1308.7	1309.4	
				1305.3sh	1303.8	
				1303.0	1300.6	
er = •	~~~			1300.4	<u> </u>	
CH ₃	CH _{3 OPLA}	607.3	606.5	609.3	602.7	S7, S23
				604.0		

			C ₂ D ₅ OH			
CD ₂ CDO	CD ₂ c str	_	- -	2124.9	2118.6	S2, S3
023020	02 5 s-su			2122.6		~_, ~~
	CD at a	2062.4	2061.6	2056.6	2069-1	
		2060.2	2001.0	2020.0	2054 3	
		2000.2			2051.5	
		2034.7			2030.7	
	CO	1725 5	1716 3	1721 5	1726.0	
	CO str	1733.5	1740.5	1731.3	1720.9	
		1724.0	1733.0	1726.0		
			1732.2	1723.0		
	CD	11540	1720.9	1156 2	1150 7	
	CD bend	1154.8	1154.5	1150.3	1152.7	
	$CD_{3 \text{ s-deform}}$	1026.8	1024.9	1022.4	1019.2	
	CC str	943.9	939.5	937.4	939.1	
		940.3				
		934.5				
	CCO deform	443.7	442.2	443.3	442.1	
		436.7	433.3	432.4	439.5	
					429.6	
CD_2CDOD	OD_{str}	2684.4	2679.8	2667.1	2654.9	S4
			2676.9sh			
CD ₂ CDOH	OH str	_	3626.9	3609.2	_	S2, S4
2	54		3623.3	3607.1		,
			3615.5			
	CC atr	15956	1598.6	1595 3	1592.5	
	e e su	1585 3	1597 1	1593.8	1584.8	
		1578.4	1590.0	1587 7	1201.0	
		1070.1	1581.6	100/17		
	Mixed mode	0267	024.2	022.5	920.9	
	winked mode	023.3)24.2	122.5	016 3sh	
		923.3 651.6	652 Jah	6515	648.0	
	CD_2CD_{OPLA}	031.0	651 5	640.8	040.0 616 1	
			031.3	049.0	040.4	
	۵D	2712 0	049.9811			56
C_2D_2 ··· <i>HDO</i>	OD_{str}	2/15.0	2714.0	_ 1400 5	—	30
	OH bend	1599.0	1401.0	1400.3		C C
$HCCD$ ··· D_2O	CD_{a-str}	2547.3	2542.2	—	—	50
	CD	2541.4	2570.2	0.570 (0.6
$DCCH \cdots D_2O$	CD_{a-str}	2591.4	25/8.3	25/3.6	—	86
	CH _{a-bend}	729.7	729.3	725.3		
$C_2D_2\cdots D_2O$	OD a-str	2769.8	2775.0	2766.9	—	S2, S6
	CD a-str	2414.1	2411.0	2405.7	2401.0	
	OH bend	1180.7	1176.2	1173.0	—	
	CD a-bend	516.5	514.3	512.9		
		510.7				
CD ₃ CO [•]	CO str	—	—	1862.2	1859.4	S2, S7, S8
	CD _{2 scis}			—	1022.0	
					1020.9sh	

5 660 F	~~~					~~
D_2CCO-D_2	$CD_{2 \text{ s-str}}$	2270.2	2265.8	2260.3	2259.1	S 2
		2265.7			2255.4	
	$v_3 + v_4$	2156.5	2154.9	2151.1	2146.1	
	CO at	2120.6	2118.7	2114.4	2110.3	
					5381	
	CD ₂ rock-opla			122.2	<i>420.2</i>	
D 000	CO rock-opla	2270.2	22 (0.0	432.2	429.3	62.67
D_2CCO	$CD_{2 \text{ s-str}}$	2270.2	2260.0	2255.6	2250.4sh	S2, S7,
	v_3+v_4	2265.7	2149.2	2145.7	_	S10, S11
	CO _{str}	2153.3	2112.7	2110.1	2106.8	
		2120.6				
DCCO'	CCO deform	1994.9	1993.3	1993.2sh	1993.1	S2, S12, S13
	ucronni	1992.1	1990.0	1990.0	1989 2sh	, , , , , , , , , , , , , , , , , , , ,
		1772.1	1770.0	1770.0	1086.0	
000	CO	1072.9	1072.2	1060 5	1065.2	C2 C14
	CO _{str}	1972.8	1972.2	1969.5	1965.5	52, 514
		1967.2		1966.3	1962.8	
HDCO	CH str	—	2859.1	—	—	S15, S17
			2762.2			
			2760.3			
			2758.2			
			2734 5			
	CO		1710.0	1716 1		
			1719.0	1/10.1		
	CHD scis		1390.0	-		015 017
D_2CO	$CD_2 a-str$	—	21/8.6	21/0.8	_	\$15-\$17
	$CD_{2 \text{ s-str}}$		2069.3	2062.3		
	CO str		1696.4	1693.6		
			1694.2			
	CD_{2} scie		1099.2	1096.5		
	CD_2 and		987 7	985.4		
	CD_2 rock		942.5	040.8		
UCO'	$CD_{2 wag}$		942.J 2491 4	940.0		Q15 Q10 Q21
HCU	CH str	-	2481.4	-	_	515, 519–521
	CO _{str}	1869.2	1862.8	1860.0		
		1866.1				
DCO'	CD str	1917.8	1925.2	1918.9	1922.7	S18
		1909.9			1910.5	
	CO str	_	1801.1	_	_	
	DCO daform	852.2	849 7	846.8	850.8	
		8/8 6	01717	01010	02010	
CO	CO	2140.0	2127.6	2125 6	21227	\$7 \$21
CO	CO str	2140.9	2137.0	2135.0	2132.7	57, 521
CLID	<u>au</u>	2000 5	2 000 -	2006 7 1	2128.3 <i>S</i> h	6.0.4
CHD_3	CH str	2998.5	2998.5	2986.7sh	_	S24
		2996.6	2996.6	2984.8		
		2991.1	2990.9			
		2989.9sh				
	$CD_{3 rock}$	1290.4	1288.1	1301.2		
	5 IOCK		1286 9	1297 7		
			1200.7	1205.2		
				17016		
	CD	1022.9	1020 2	1204.0		
	CD_3 d-deform	1032.8	1030.2	1027.7		
			1024.5	1022.3		
	CD _{3 s-deform}	1002.8	1001.9	1000.2		
			1000.1	998.4		

_

CD_4	CD _{3 d-deform}	996.4 990.4	993.9	992.1	997.2 992.9	S7, S25
					990.0sh	
CD_3	CD _{3 OPLA}	457.4	455.1	454.4	454.0	S7, S23

sh-*shoulder*, *OPLA*-*out of plane*.

^{*a*} In a Ne matrix both of H_2CCO/H_2CCO-H_2 (D_2CCO/D_2CCO-D_2) may contribute to all observed absorptions of ketene except CH_2 _{s-str} (CD_2 _{s-str}), see Ref. S2 for details. Owing to this reason we provide the same values of absorption maxima both for H_2CCO and H_2CCO-H_2 (D_2CCO/D_2CCO-D_2). ^{*b*} Fermi resonance with an overtone or a combination band, see Ref. S8 for details.

Fig. S1 Kinetics of the radiation-induced decay of ethanol molecules in the C₂H₅OH/Ng 1:1000 samples (Ng = Ne, Ar, Kr, or Xe) irradiated with X-rays. The relative concentration of ethanol in the samples irradiated to different doses was calculated by integration of the O–H _{str} absorption band. The initial molar mass concentrations of C₂H₅OH were determined based on molar a mixture ratio of 1:1000. The radiation-chemical yield of the C₂H₅OH degradation estimated from initial slopes of the recorded kinetics profiles are ca. 0.29, 0.67, 0.42, and 0.51 µmol J⁻¹ for Ne, Ar, Kr, and Xe, respectively, i.e. the efficiency of ethanol decomposition increases in a row Ne < Kr < Xe < Ar.

Fig. S2 Fragments of the difference FTIR spectra (recorded at 4.4 K) showing the effect of the X-ray irradiation for 5 min (*a*) and UV photolysis (254 nm) for 30 min (*b*) of the C₂D₅OH/Xe (1:1000) in the regions containing the absorptions bands assigned to the CD₃CDOH(D)[•] radicals. Absorption features in the OH stretching region observed in the deposited sample and decreased upon irradiation were tentatively attributed to the ethanol dimers^{S26} (marked with 'c').

Supplementary references

- S1. Perchard, J. P.; Josien, M. L. J. Chim. Phys., 1968, 65, 1834–1855.
- Zasimov, P. V.; Sanochkina E. V.; Feldman, V. I. Phys. Chem. Chem. Phys., 2022, 24, 1, 419–432.
- S3. Wiberg, K. B.; Thiel, Y.; Goodman, L.; Leszczynski, J. J. Phys. Chem., 1995, 99, 38, 13850–13864.
- S4. Hawkins M.; Andrews, L. J. Am. Chem. Soc., 1983, 105, 9, 2523-2530.
- S5. Estep, M. L.; Morgan, W. J.; Winkles, A. T.; Abbott, A. S.; Villegas-Escobar, N.; Mullinax, J. W.; Turner, W. E.; Wang, X.; Turney, J. M.; Schaefer III, H. F. *Phys. Chem. Chem. Phys.*, **2017**, *19*, 40, 27275–27287.
- S6. Engdahl A.; Nelander, B. Chem. Phys. Lett., 1983, 100, 2, 129–132.
- S7. Das, P.; Lee, Y. P. J. Chem. Phys., 2014, 140, 24, 244303.
- S8. Jacox, M. E. Chem. Phys., 1982, 69, 3, 407–422.
- S9. Zasimov, P. V.; Ryazantsev, S. V.; Tyurin, D. A.; Feldman, V. I. Mon. Not. R. Astron. Soc., 2020, 491, 4, 5140–5150.
- S10. Moore, C. B.; Pimentel, G. C. J. Chem. Phys., 1963, 38, 12, 2816–2829.
- S11. Haller, I.; Pimentel, G. C. J. Am. Chem. Soc., 1962, 84, 15, 2855–2857.
- S12. Jacox, M. E.; Olson, W. B. J. Chem. Phys., 1987, 86, 6, 3134-3142.
- S13. Forney, D.; Jacox, M. E.; Thompson, W. E. J. Mol. Spectr., 1995, 170, 1, 178–214.
- S14. Jacox, M. E.; Milligan, D. E.; Moll, N. G.; Thompson, W. E. J. Chem. Phys., 1965, 43, 10, 3734–3746.
- S15. Saenko, E. V.; Feldman, V. I. Phys. Chem. Chem. Phys., 2016, 18, 47, 32503-32513.
- S16. Khoshkhoo, H.; Nixon, E. R. Spectrochim. Acta, 1973, 29, 4, 603–612.
- S17. Nelander, B. J. Chem. Phys., 1980, 73, 3, 1026–1033.
- S18. Milligan, D. E.; Jacox, M. E. J. Chem. Phys., 1969, 51, 1, 277–288.
- S19. Maier G.; Lautz, C. Eur. J. Org. Chem., 1998, 1998, 5, 769-776.
- S20. Pettersson, M.; Khriachtchev, L.; Jolkkonen, S.; Räsänen, M. J. Phys. Chem. A, 1999, 103, 45, 9154–9162.
- S21. Dubost, H. Chem. Phys., 1976, 12, 2, 139–151.
- S22. Govender, M. G.; Ford, T. A. J. Mol. Struct., 2000, 550, 445-454.
- S23. Milligan, D. E.; Jacox, M. E. J. Chem. Phys., 1967, 47, 12, 5146-5156.
- S24. Thompson, M. G.; Parnis, J. M. J. Phys. Chem. A, 2008, 112, 47, 12109–12116.
- S25. Jones, L. H.; Ekberg, S. A. J. Chem. Phys., 1987, 87, 8, 4368-4370.
- S26. Coussan, S.; Alikhani, M. E.; Perchard, J. P.; Zheng, W. Q. J. Phys. Chem. A, 2000, 104, 23, 5475–5483.