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Part 1 The orbital overlap features in Y2Ti2O5S2

The crystal orbital Hamilton populations (COHP) is calculated here to study the overlap 

between atoms (Figure 1S). The distance between two atoms can also reflect the 

bonding characteristics to a certain extent (Table 1). The distance between Y and S 

atoms is 2.82 Å, which is far from than Y−S single bond, indicating an ionic bond. The 

ELF Figure in text also confirmed this. However, there is still a little overlap between 

Y−dxy and S−px,y orbital that contributes to CBM and VBM, respectively (Figure 1S 

(b)). The distance between Ti and O atom is 1.82 Å, which is smaller than Ti−O single 

covalent bond, indicating a weak covalent bond between Ti and O atom. From Figure 

1S (b) we can find no overlap between Ti−dxy and S−px,y orbital.
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Figure S1. The COHP of selected atom (a) and selected orbital (b) in Y2Ti2O5S2. Ti−dxy 

orbital and S−px,y orbital are the major contributors to CBM and VBM individually. We 

can discover that the optical transition between Ti and S atoms cannot happen because 

of the no overlap between Ti−dxy orbital and S−px,y orbital.

Table S1. The table of bond length in our optimized structure and the covalent radii tested 
by Pekka Pyykkö.1-4

The bond length of Y2Ti2O5S2 (unit: Å)
Oequator Oapex S

Ti 1.82 1.96 2.92
Y 2.44 - 2.82
Covalent radii of the element involved in Y2Ti2O5S2 (Å)

Ti single-bond 1.36
Y single-bond 1.63
O single-bond 0.63
S single-bond 1.03

Part 2 The transition dipole moment (TDM) of Y2Ti2O5S2，CsPbI3 and Ta3N5.

Figure S2. The TDM of Y2Ti2O5S2 (a), CsPbI3 (b) and Ta3N5 (c). Although the 

transition at Γ point is allowed in Y2Ti2O5S2, it is still very weak compared to CsPbI3 

and Ta3N5.



Part 3 The influence spectra, uACF and pure-dephasing function

Hefei-named packages are used based on hopping probabilities between the two 

states obtained as5:
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two states.  express the bandgap here. The elastic scattering can be presented by the 𝜀𝑘 ‒ 𝜀𝑗

decay time in pure-dephasing function and the unnormalized autocorrelation functions (uACF). The 
uACF can be written as:6, 7
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coherent superposition from its average value. The pure-dephasing function is given by:
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Fourier transforms (FTs) of the fluctuations for VBM-CBM energy gaps induced by phonon6, 8, 9, 
named influence spectra or spectral density, can reflect the phonon mode that participates in e-ph 
coupling and is given by:
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Part 4 The distribution of band edge and ELF in SrTiO3.



Figure S3 (a)(b) The partial charge density of VBM (a) and CBM (b) in SrTiO3 with 

isosurface value 0.02 e/Å3. (c) Electron localization function (ELF) in the (100) plane 

of SrTiO3. The Ti–O bond is a mixture of ionic and covalent bonding, forming the 

network distribution of 0.2<ELF<0.7 in whole bulk. 

Part 5 The weak exciton effect in Y2Ti2O5S2.

Figure S4 (a) The imaginary parts of the frequency-dependent dielectric function of 

Y2Ti2O5S2. The optical calculations with e-h interaction are presented, based on BSE 

level. (b) side view of exciton wave functions of Y2Ti2O5S2. A 5 × 5 × 1 supercell was 

adopted. The isovalue value is 8×10-9 e/Å3. The hole position is marked by a black spot 

in the rock-salt layer. The electron mainly distributes in the perovskite layer, which 

finely explains its extremely small density distribution of excitons.

Part 6 The Robustness of electron-hole separated transport.



Figure S5 The VBM and CBM’s partial charge density of snapshots at room 

temperature in Y2Ti2O5S2. We can find the robustness of electron-hole separated 

distribution, which is also the main character of electron-hole separated transport.
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