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Figure S1. (Top/side view) Possible adsorption configurations of (a-c) CO, (d-f) NH3, (g-i) 

NO2, (j-l) NO, and (m-o) SO2 gas molecules on top of the MoTe2/InN vdW heterostructure. 

The possible adsorption sites are TN, Hollow site, along with possible orientations on TIn (Atom 

colour code purple, Mo; light-brown, Te; pink, In; white, N) 
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Figure S2. (Top/side view) The most energetically favourable adsorption configurations of 

NO2 gas molecule on (a) MoTe2 and (b) InN individual monolayer surfaces. (Atom colour code 

purple, Mo; light-brown, Te; pink, In; white, N; red, O)
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Figure S3. Total density of states (TDOS) and partial density of states (PDOS) for pristine 

MoTe2/InN vdW heterostructure before the adsorption of gas molecules. (Note: Fermi level has 

been shifted to zero)
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Table S1. Calculated adsorption energy (Eads), the shortest distance between gas molecules and 

the adsorbent (d), and net Bader charge on the gas molecule (positive/negative sign of charge 

transfer denotes the transfer direction from/to the heterostructure).
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Gas Molecule Adsorption Site Eads(eV) d(Å) ΔQ(e)

T(N) −0.21 2.90 0.01+

T(Hollow) −0.18 3.02 0.008+

Orientation −0.13 3.19 0.002+
CO

T(N) −0.97 2.73 −0.078

T(Hollow) −0.94 2.86 −0.069

Orientation −0.90 2.94 −0.061

NH3

T(N) −0.51 3.41 0.32+

T(Hollow) −0.84 2.42 0.48+NO2

Orientation −0.55 3.30 0.33+

T(N) −0.21 3.14 0.07+

T(Hollow) −0.19 3.12 0.068+
NO

Orientation −0.16 3.31 0.063+

T(In) −2.09 2.25 0.21+

T(Hollow) −0.93 2.65 0.13+
SO2

Orientation −0.24 3.32 0.07+



Table S2. Favourable adsorption site, calculated adsorption energy (Eads), the shortest distance 

between NO2 and the adsorbent (d), net Bader charge on the NO2 gas molecule 

(positive/negative sign of charge transfer denotes the transfer direction from/to the monolayer), 

and the magnetic moment upon adsorption of NO2 on individual MoTe2 and InN monolayers.

Substrate Adsorption 
site Eads (eV) d ( )Å  (e)∆𝑄 Magnetic 

moment ( B)𝜇

MoTe2 TTe ─0.39 2.79 0.32+ 0.9999+

InN TIn ─0.55 2.2 ─0.62 ─0.9999
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Table S3. The band gap (Eg), and effective masses of electron ( ) and hole carriers ( ) of 𝑚 ∗
𝑒 𝑚 ∗

ℎ

MoTe2/InN vdW heterostructure with various adsorbed gas molecules.

Appendix A. Representative VASP INCAR file (geometrical relaxation of NO2 on the surface 
of MoTe2/InN vdW heterostructure, 4  4 unit cell)×

Global Parameters
SYSTEM   = MoTe2InN_NO2_4x4x1  (Title string)
ISTART   = 0   (Starting job, begin from scratch)
ICHARG   = 2   (Take superposition of initial atomic charge densities)
ISPIN.   = 2   (Spin polarized DFT)
LREAL    = .F. (Projection is done in reciprocal space)
PREC     = Accurate (Precision level)
LWAVE    = .T.  (Write WAVECAR to the file)
LCHARG   = .T.  (Write CHGCAR to the file)
ADDGRID  = .T.  (Increase grid to help GGA convergence)

Electronic Relaxation
NELM     = 100  (Max number of electronic SCF steps)
EDIFF    = 1E-4 (SCF energy convergence in eV)
ENCUT    = 450  (cut-off energy of plane wave basis set in eV)
ALGO     = Fast (robust mixture of the Davidson and RMM-DIIS algorithms)
ISMEAR   = 0    (Gaussian smearing)
SIGMA    = 0.2  (width of the smearing in eV)

Ionic Relaxation
NSW      = 300    (Max ionic steps or iterations)
EDIFFG   = -0.01  (Ionic convergence eV/AA)
IBRION   = 2      (Ionic relaxation conjugate gradient algorithm)
ISIF     = 4      (lattice/atomic coordinates relaxation, fixed volume)
ISYM     = 2      (Memory conserving symmetrization of the charge density)
POTIM    = 0.5
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(m0)𝑚 ∗
𝑒 (m0)𝑚 ∗

ℎ
Gas 

molecule
Eg (eV)

K─M ( )Γ [ ,M]─Γ

M
K─M ( )Γ ─M (K)Γ [M,K] ─M [k, ] ─ Γ Γ

Pristine 0.52 0.43 (0.42) ─ 1.41 (1.36) ─ ─ ─

CO 0.67 0.43 (0.42) ─ 1.52 (1.39) ─ ─ ─

NH3 0.97 0.45 (0.44) ─ ─ 2.31 (2.10) ─ ─

NO2 0.87 0.44 (0.43) ─ ─ ─ ─ 9.52

NO 0.78 ─ 0.43 ─ ─ 1.77 ─

SO2 0.99 0.47 (0.45) ─ ─ 1.19 (1.52) ─ ─



vdW Corrections
GGA      = OR   (optPBE exchange & PBE correlation)
LUSE_VDW = .T.  (switches on the use of a nonlocal vdW-DF functional)
AGGAC    = 0.0 
LASPH    = .T.  (non-spherical contributions from the gradient corrections)
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