Supporting Information

MoTe₂/InN van der Waals Heterostructures for Gas Sensors: A DFT Study

Jaafar Abdul-Aziz Mehrez^a, Xiyu Chen^a, Min Zeng^{a,*}, Jianhua Yang^a, Nantao Hu^a, Tao Wang^a, Ruili Liu^a, Lin Xu^b, Yorexis González-Alfaro^c, and Zhi Yang^{a,*}

^a Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

^b Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine; National Clinical Research Centre for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Centre for Visual Science and Photomedicine, Shanghai 200080, People's Republic of China

^c Centre for Advanced Studies of Cuba, Havana, Cuba

* Corresponding authors: Min Zeng (E-mail: minzeng@sjtu.edu.cn) and Zhi Yang (E-mail: zhiyang@sjtu.edu.cn)

Contents

- Figure S1. (Top/side view) Possible adsorption configurations of adsorbed gas molecules on top of the MoTe₂/InN vdW heterostructure.
- Figure S2. Most favorable adsorption sites of NO₂ on top of individual MoTe₂ and InN monolayers
- Figure S3. Total and partial density of states for pristine MoTe₂/InN vdW heterostructure before the adsorption of gas molecules
- Table S1. Calculated adsorption energy (E_{ads}) , the shortest distance between gas molecules and the adsorbent (*d*), and net Bader charge on the adsorbed gas molecules.
- Table S2. Favorable adsorption site, calculated adsorption energy (E_{ads}) , the shortest distance between NO₂ and the adsorbent (*d*), charge transfer, and the magnetic moment upon adsorption of NO₂ on individual MoTe₂ and InN monolayers.

- Table S3. The band gap (Eg), and effective masses of electron (^m^{*}_e) and hole carriers (^m^{*}_h) of MoTe₂/InN vdW heterostructure with various adsorbed gas molecules.
- Appendix A: Representative VASP input files used for geometrical relaxation of NO₂

adsorbed on $MoTe_2/InN$ vdW heterostructure.

Figure S1. (Top/side view) Possible adsorption configurations of (a-c) CO, (d-f) NH₃, (g-i) NO₂, (j-l) NO, and (m-o) SO₂ gas molecules on top of the MoTe₂/InN vdW heterostructure. The possible adsorption sites are T_N , Hollow site, along with possible orientations on T_{In} (Atom colour code purple, Mo; light-brown, Te; pink, In; white, N)

Figure S2. (Top/side view) The most energetically favourable adsorption configurations of NO_2 gas molecule on (a) $MoTe_2$ and (b) InN individual monolayer surfaces. (Atom colour code purple, Mo; light-brown, Te; pink, In; white, N; red, O)

Figure S3. Total density of states (TDOS) and partial density of states (PDOS) for pristine $MoTe_2/InN vdW$ heterostructure before the adsorption of gas molecules. (Note: Fermi level has been shifted to zero)

Gas Molecule	Adsorption Site	$E_{ads}(eV)$	d(Å)	<i>∆Q</i> (e)
	T _(N)	-0.21	2.90	+ 0.01
СО	$T_{(Hollow)}$	-0.18	3.02	+0.008
	Orientation	-0.13	3.19	+ 0.002
	T _(N)	-0.97	2.73	-0.078
NH ₃	T _(Hollow)	-0.94	2.86	-0.069
	Orientation	-0.90	2.94	-0.061
	T _(N)	-0.51	3.41	+ 0.32
NO ₂	T _(Hollow)	-0.84	2.42	+ 0.48
	Orientation	-0.55	3.30	+ 0.33
NO	T _(N)	-0.21	3.14	+ 0.07
NO	$T_{(Hollow)}$	-0.19	3.12	+ 0.068
	Orientation	-0.16	3.31	+ 0.063
50.				
	T _(In)	-2.09	2.25	+ 0.21
502	$T_{(Hollow)}$	-0.93	2.65	+ 0.13
	Orientation	-0.24	3.32	+ 0.07

Table S1. Calculated adsorption energy (E_{ads}) , the shortest distance between gas molecules and the adsorbent (*d*), and net Bader charge on the gas molecule (positive/negative sign of charge transfer denotes the transfer direction from/to the heterostructure).

Table S2. Favourable adsorption site, calculated adsorption energy (E_{ads}) , the shortest distance between NO₂ and the adsorbent (*d*), net Bader charge on the NO₂ gas molecule (positive/negative sign of charge transfer denotes the transfer direction from/to the monolayer), and the magnetic moment upon adsorption of NO₂ on individual MoTe₂ and InN monolayers.

Substrate	Adsorption site	E_{ads} (eV)	$d(\text{\AA})$	$\Delta Q_{(e)}$	Magnetic moment (µB)
MoTe ₂	T_{Te}	-0.39	2.79	+ 0.32	+ 0.9999
InN	T_{In}	-0.55	2.2	-0.62	-0.9999

Gas molecule	$E_{g}(eV)$	$m_{e(m_0)}^*$		$m_{h(m_0)}^*$			
		K—М (Γ)	[^Г ,М]— М	К—М (Γ)	$\Gamma_{M(K)}$	[M,K] <i>—</i> M	$[k, \Gamma] = \Gamma$
Pristine	0.52	0.43 (0.42)	_	1.41 (1.36)	_	_	_
CO	0.67	0.43 (0.42)	—	1.52 (1.39)	_	_	_
NH_3	0.97	0.45 (0.44)	—	_	2.31 (2.10)	_	—
NO_2	0.87	0.44 (0.43)	—	_	_	_	9.52
NO	0.78	_	0.43	_	_	1.77	—
SO ₂	0.99	0.47 (0.45)	—	—	1.19 (1.52)	—	_

Table S3. The band gap (E_g) , and effective masses of electron $\binom{m_e^*}{e}$ and hole carriers $\binom{m_h^*}{e}$ of

MoTe₂/InN vdW heterostructure with various adsorbed gas molecules.

Appendix A. Representative VASP INCAR file (geometrical relaxation of NO₂ on the surface of MoTe₂/InN vdW heterostructure, 4×4 unit cell)

Global Parameters

SYSTEM = MoTe2InN_NO2_4x4x1 (Title string)

ISTART = 0 (Starting job, begin from scratch)

ICHARG = 2 (Take superposition of initial atomic charge densities)

ISPIN. = 2 (Spin polarized DFT)

LREAL = .F. (Projection is done in reciprocal space)

PREC = Accurate (Precision level)

LWAVE = .T. (Write WAVECAR to the file)

LCHARG = .T. (Write CHGCAR to the file)

ADDGRID = .T. (Increase grid to help GGA convergence)

Electronic Relaxation

NELM = 100 (Max number of electronic SCF steps)

EDIFF = 1E-4 (SCF energy convergence in eV)

ENCUT = 450 (cut-off energy of plane wave basis set in eV)

ALGO = Fast (robust mixture of the Davidson and RMM-DIIS algorithms)

ISMEAR = 0 (Gaussian smearing)

SIGMA = 0.2 (width of the smearing in eV)

Ionic Relaxation

NSW = 300 (Max ionic steps or iterations)

EDIFFG = -0.01 (lonic convergence eV/AA)

IBRION = 2 (Ionic relaxation conjugate gradient algorithm)

ISIF = 4 (lattice/atomic coordinates relaxation, fixed volume)

ISYM = 2 (Memory conserving symmetrization of the charge density)

POTIM = 0.5

vdW Corrections

GGA = OR (optPBE exchange & PBE correlation)

LUSE_VDW = .T. (switches on the use of a nonlocal vdW-DF functional) AGGAC = 0.0

LASPH = .T. (non-spherical contributions from the gradient corrections)