Supporting Information

Enhancing the Seawater Desalination Performance of Multilayer Reduced Graphene Oxide Membranes by Introducing in-Plane Nanopores: A Molecular Dynamics Simulation Study

atom	σ (Å)	ε (kcal/mol)	charge (q)
O (H ₂ O)	3.5365	0.1521	-0.834
H (H ₂ O)	0.0000	0.0460	0.417
Na	2.5860	0.1046	+1
Cl	4.4020	0.1046	-1
CA (sp ² carbon)	3.5500	0.0700	0
CT (C in epoxy)	3.5000	0.0659	0.14
OS (O in epoxy)	2.9000	0.1400	-0.28
CF (C bonded with phenolic hydroxyl)	3.5500	0.0700	0.15
OH (O in phenolic hydroxyl)	3.0700	0.1699	-0.585
HO (H in phenolic hydroxyl)	0.0000	0.0000	0.435
C (C in carboxyl)	3.7500	0.1049	0.52
OH2 (O of -OH in carboxyl)	3.0000	0.1699	-0.53
O_3 (=O in carboxyl)	2.9600	0.2100	-0.44
HO2 (H of -OH in carboxyl)	0.0000	0.0000	0.45

 Table S1. Lennard-Jones parameters and partial atomic charges of atoms

Figure S1. Initial configuration of the rGO, r1NPGO, r2NPGO, r4NPGO and r1NPGO-3nm monolayers (a), and side-view of the resulting three-layer membranes (b). The orange, red, and white spheres represent carbon atoms, oxygen atoms and hydrogen atoms, respectively.

Figure S2. Number of water molecules in pure water box that are transferred from the feed side to permeate side as a function of time at 200 MPa for rGO, r1NPGO, r2NPGO, r4NPGO and r1NPGO-3nm membranes.

Figure S3. Two-dimensional density distribution of Na⁺ ions inside (a) rGO, (b) r1NPGO, (c) r2NPGO, (d) r4NPGO, and (e) r1NPGO-3nm membranes at 10 ns. The white dashed lines show the approximate range of the three-layer membranes.

x axis (Å)

-10

-20

-30

-40

-50

30 40 50 60 70 80 90 0.01000

0.007500

0.005000

0.002500

0.000

Figure S4. Two-dimensional density distribution of Cl⁻ ions inside (a) rGO, (b) r1NPGO, (c) r2NPGO, (d) r4NPGO, and (e) r1NPGO-3nm membranes at 10 ns. The white dashed lines show the approximate range of the three-layer membranes.

Figure S6. Radial distribution functions of Na⁺-Na⁺, Cl⁻-Cl⁻, and Na⁺-Cl⁻ for rGO, r1NPGO, r2NPGO, r4NPGO and r1NPGO-3nm membranes at 1 ns and 10 ns.

Figure S7. Formation of ion clusters from Na⁺ and Cl⁻ ions in (a) rGO, (b) r1NPGO, (c) r2NPGO, (d) r4NPGO, and (e) r1NPGO-3nm at 10 ns. The orange, red, white, purple, and lime spheres represent carbon atoms, oxygen atoms, hydrogen atoms, sodium ions, and chlorine ions, respectively.

Figure S8. Radial distribution functions of Na⁺-H₂O, and Cl⁻-H₂O for rGO, r1NPGO, r2NPGO, r4NPGO and r1NPGO-3nm membranes at 1 ns and 10 ns.

Figure S9. Radial distribution functions between Na⁺ and Cl⁻ ions and membrane atoms for rGO, r1NPGO, r2NPGO, r4NPGO and r1NPGO-3nm membranes at 10 ns.

O(COOH)

=O(COOH)

C(COOH)

O_(epoxy)

C_(epoxy)

C(C-OH)

C(Csp²

12

O(COOH)

C(COOH)

O_(epoxy)

C_(epoxy)

C(C-OH)

C(Csp²)

12

O(COOH)

C(COOH)

O_(epoxy)

C_(epoxy)

о_(ОН)

С(С-ОН)

C(Csp²)

12

14

=0(СООН)

14

о_(ОН)

=0_(СООН)

. 14

10

10

10

8

8

8

0_(OH)

