Supporting Information

Correlation of Magnetic Resonance (EPR, ssNMR) Parameters and Crystal-Microstrain in Marbles as a Tool to Probe their Provenance

Loukas Belles¹, Christos Dimitriou¹, Constantinos Moularas¹, Maria Solakidou¹, Marinos Theorodakopoulos², Maria Louloudi² and Yiannis Deligiannakis^{1*}

¹Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110, Ioannina, Greece

² Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

*Corresponding Author: <u>ideligia@uoi.gr</u>

Contents

Supplementary Figures	S2
Supplementary Figure 1	S2
Supplementary Figure 2	S3
Supplementary Figure 3	S5
Supplementary Figure 4	S8
Supplementary Figure 5	S9
Supplementary Figure 6	S10
Supplementary Figure 7	S10
Supplementary Figure 8	S11
Supplementary Tables	S11
Table S1: Microstain ε_0 values for the calcined Greek marbles (#2, #4, #5, #6) obtained from TG	OPAS
analysis for the XRD data	S11
Table S2: Spin Hamiltonian parameters for the calcined Greek marbles (#2, #4, #5, #6)	S12

Figure S1: EPR spectra of Fe³⁺ ions (S = 5/2) in Greek marbles #2, #3, #6 and #7. g-values for the Fe³⁺ species are indexed.

High Temperature EPR spectra 300 K up to 700 K.

Figure S2: High Temperature EPR spectra for selected Greek Marbles according to their phase composition. (a) Marble #2-Ioannina, (b) Marble #4-Thassos, (c) Marble #5-Kavala and (d) Marble #6-Chios.

In Figure S.3 a-d we present the EPR spectra of each selected marble at 300K before calcination (black line) and at 300K after calcined up to 700K (4 hours rest at 700K).

Figure S3: High Temperature EPR spectra from selected Greek Marbles before and after calcination. (a) Marble #2, (b) Marble #4, (c) Marble #5 and (d) Marble #6.

Figure S4: XRD patterns of the selected Greek marbles (a) #2, (b) #4, (c) #5, (d) #6 with a calcination treatment of 700 K for 30 min, 3 hours and 3 days.

Figure S5: EPR spectra of selected Greek marbles (#2, #4, #5, #6) calcined at 700 K for different time periods.

Figure S6: Microstrain vs calcination time for the temperature of 700 K.

Figure S7: D_{strain} versus calcination time of the selected Greek marbles (#2, #4, #5, #6). We acknowledge that calcitic marbles have large D_{strain} = 35-50 G over time, whilst dolomitic have low D_{strain} = 15-20 G.

Figure S8: ¹³C NMR spectra of marbles.

Supplementary Tables

Table S1: Microstain ε_0 values for the calcined Greek marbles (#2, #4, #5, #6) obtained from TOPAS analysis for the XRD data.

	Microstrain ε_0 (\times 10 ⁻⁴)				
Calcination Time	Calcite	Dolomite			
	CaCO ₃	CaMg(CO ₃) ₂			
Marble #2					
700K for 30 min	5.6 ± 0.2	_			
700K for 3 hours	5.4 ± 0.1	-			
700K for 3 days	5.3 ± 0.1	-			
Marble #4					
700K for 30 min	8.0 ± 0.7	4.2 ± 0.6			
700K for 3 hours	9.5 ± 1.7	6.0 ± 0.6			
700K for 3 days	8.8 ± 1.3	3.5 ± 0.7			
Marble #5					
700K for 30 min	2.7 ± 0.2	_			
700K for 3 hours	2.9 ± 0.4	-			
700K for 3 days	2.8 ± 0.4	-			
Marble #6					
700K for 30 min	8.6 ± 0.2	_			
700K for 3 hours	7.9 ± 0.4	-			
700K for 3 days	8.5 ± 0.4	-			

Calcination Time	A $[A_x, A_y, A_z]$ (Gauss) (± 1)	[D, E] (Gauss) (± 0.5)	D_{strain} (Gauss) (\pm 1)	g (± 0.0001)	
Marble #2					
700K for 30 min	[95, 94, 93]	[86.0, 4.3]	42	2.0005	
700K for 3 hours	[95, 94, 93]	[86.4, 4.3]	46	2.0005	
700K for 3 days	[95, 94, 93]	[85.2, 4.3]	49	2.0005	
Marble #4					
700K for 30 min	[94, 95, 95]	[14.0, 0.5]	20	2.0005	
700K for 3 hours	[95, 95, 95]	[14.5, 0.5]	22	2.0005	
700K for 3 days	[95, 95, 95]	[14.9, 0.5]	23	2.0005	
Marble #5					
700K for 30 min	[93, 96, 93]	[82.0, 4.6]	40	2.0005	
700K for 3 hours	[93, 96, 93]	[90.3, 4.6]	42	2.0005	
700K for 3 days	[93, 96, 93]	[83.3, 4.6]	45	2.0005	
Marble #6					
700K for 30 min	[94, 96, 94]	[90.0, 3.6]	47	2.0005	
700K for 3 hours	[94, 94, 93]	[89.8, 3.6]	48	2.0005	
700K for 3 days	[94, 94, 93]	[85.3, 3.6]	50	2.0005	

Table S2: Spin Hamiltonian parameters for the calcined Greek marbles (#2, #4, #5, #6).

Table S3: Integrated areas of the $^{\rm 13}{\rm C}$ solid state NMR spectra of Greek marbles.

Marblo	Integrated
Waldle	area
#1	101613
#2	450926
#3	256272
#4	349316
#5	95384
#6	301752
#7	122979