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1. Time unit derivation
The time unit  is derived based on the diffusion coefficient D. As shown in Figure S1 (a), 𝜏

simulations have been performed on a square lipid bilayer membrane with the size 200 

σ*200 σ to obtain diffusion coefficient D. The average mean squared displacement MSD 

of lipid beads have been collected and shown in Figure S1(b). Subsequently, the diffusion 

coefficient D could be calculated through the expression below 1,

                 (S1)
𝑀𝑆𝐷 =

1
𝑁

𝑁

∑
𝑖 = 1

[(𝑥𝑖 ‒ 𝑥0
𝑖)2 + (𝑦𝑖 ‒ 𝑦0

𝑖)2] = 4𝐷𝑡

in which ,  are the coordinate components of ith lipid bead at time t while ,  are the 𝑥𝑖 𝑦𝑖 𝑥0
𝑖 𝑦0

𝑖

initial coordinate components of ith lipid bead . The calculated diffusion coefficient is 

equal to 1×10-2 σ2/τ, while the diffusion coefficient for lipids is around 5  2. Therefore, 𝜇𝑚2/𝑠

the time unit τ is 2 ns.
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Figure S1. Diffusion tests for the lipid bilayer (a) overview of the simulation model (b) 

mean squared displacement of lipids.

2. Computational Method
2.1 Coarse-grained model of the nuclear membrane.
We applied Cooke and Deserno’s solvent-free model of lipid bilayers based on an attractive 

potential.3 This model can help reduce simulation time up to 90% as compared to a model 

with explicit solvents filling the entire simulation box. The following potentials are used 

in the simulation to describe the van der Waals interaction between beads:

The size of each lipid bead is fixed via a Weeks-Chandler-Andersen potential 

𝑈𝑊𝐶𝐴 = 4𝜖[( 𝑏
𝑟𝑖𝑗

)12 ‒ ( 𝑏
𝑟𝑖𝑗

)6 +
1
4], 𝑟𝑖𝑗 < 𝑟𝑐 = 6 2𝑏 (S2)

In order to ensure the cylindrical lipid shape,  is set as  and 𝑏 𝑏ℎ𝑒𝑎𝑑, ℎ𝑒𝑎𝑑 = 𝑏ℎ𝑒𝑎𝑑,𝑡𝑎𝑖𝑙 = 0.95𝜎

. The three lipid beads are linked by two finite extensible nonlinear elastic 𝑏𝑡𝑎𝑖𝑙,𝑡𝑎𝑖𝑙 = 𝜎

FENE bonds 

𝑈𝐹𝐸𝑁𝐸 = ∑
𝑏𝑜𝑛𝑑𝑠

‒
1
2

𝑘𝑏𝑅 2
𝑚𝑎𝑥ln (1 ‒

𝑟2

𝑅 2
𝑚𝑎𝑥

) (S3)

with stiffness  and divergence length . Lipids are straightened by 𝑘𝑏 = 30𝜀 𝜎2 𝑅𝑚𝑎𝑥 = 1.5𝜎

a harmonic spring 

𝑈𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 = ∑
𝑏𝑜𝑛𝑑𝑠

𝑘𝑏(𝑟 ‒ 𝑟0)2
(S4)



with bending stiffness  and equilibrium length  between the head bead and 𝑘𝑏 = 10𝜀 𝜎2 4𝜎

the second tail bead. The absence of explicit solvents and the hydrophobic effect is 

compensated for by an attractive interaction between the tail beads. The potential we use 

to account for the hydrophobic effect is 

𝑈𝑐𝑜𝑠 = {                ‒ 𝜀,                         𝑟 < 𝑟𝑐
‒ 𝜀𝑐𝑜𝑠2[𝜋(𝑟 ‒ 𝑟𝑐) 2𝑤],     𝑟𝑐 ≤ 𝑟 ≤ 𝑟𝑐 + 𝑤

                        0,                      𝑟 > 𝑟𝑐 + 𝑤 � (S5)

which describes an attractive potential with depth  that smoothly tapers to zero for 𝜀

. In our simulations, the decay range  is set as . The interaction between NPs 𝑟 > 𝑟𝑐 𝑤 1.6𝜎

and lipid heads in the nuclear pore and envelope is described by the Lennard-Jones 

potential function

𝑈𝐿𝐽 = 4𝜖[( 𝑏
𝑟𝑖𝑗

)12 ‒ ( 𝑏
𝑟𝑖𝑗

)6], 𝑟𝑖𝑗 < 𝑟𝑐 = 2.5𝜎 (S6)

where  is the distance between beads   and  . In the following, 𝑟𝑖𝑗 𝑖 𝑗

Table S1. Interaction parameters for nuclear envelope, nuclear pore and NPs

Bead type Bead type Interaction Potential Parameters

Lipid head (nuclear 

envelope and pore) 

Lipid head (nuclear 

envelope and pore)
𝑈𝑊𝐶𝐴 𝑏 = 0.95𝜎

Lipid head (nuclear 

envelope and pore)

Lipid tail (nuclear 

envelope and pore)
𝑈𝑊𝐶𝐴 𝑏 = 0.95𝜎

Lipid tail (nuclear 

envelope and pore)

Lipid tail (nuclear 

envelope and pore)
𝑈𝑐𝑜𝑠 𝑏 = 𝜎, 𝑤 = 1.6𝜎

Lipid head (nuclear 

envelope and pore)
NPs 𝑈𝐿𝐽 𝑏 = 𝜎

Lipid tail (nuclear 

envelope and pore)
NPs 𝑈𝑊𝐶𝐴 𝑏 = 0.95𝜎

NPs NPs 𝑈𝐿𝐽 𝑏 = 𝜎

2.2 Coarse-grained model of elastic spherical NPs

A coarse-grained (CG) model 4-9, inspired by the concept of modelling red blood cells 

through CGMD simulations, was implemented to describe the interactions inside NPs 



composed of thin shells of a triangular lattice spring network. Corresponding beads on the 

surface of NPs are evenly distributed, approximately 1σ between adjacent beads. Two 

adjacent beads would form one bond element, three adjacent beads would form one 

triangular element, while two triangular elements sharing one edge would form one 

bending element. The total potential energy of such an elastic NP can be expressed as

                       (S7)𝑈𝑡 =  𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑟𝑒𝑎 + 𝑈𝑣𝑜𝑙𝑢𝑚𝑒 + 𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔.

The bond energy term  represents in-plane stretching energy of the spring network 𝑈𝑏𝑜𝑛𝑑

expressed as

                                   (S8)
𝑈𝑏𝑜𝑛𝑑 =  

𝑁𝑏

∑
𝑖 = 1

𝑘𝑏𝑜𝑛𝑑(𝑙𝑖 ‒ 𝑙0
𝑖)2

where  is the number of bonds,  is the bond stiffness,  is the current length of the  𝑁𝑏 𝑘𝑏𝑜𝑛𝑑 𝑙𝑖

bond spring, and  is the equilibrium length for i-th individual bond springs. The terms  𝑙0
𝑖 𝜀

and  are the basic units of energy and distance in our CGMD simulations, respectively. 𝜎

The bond potential used here is a variant of the harmonic bond potential which avoids 

significant residual stress in NPs due to its customized equilibrium length for each 

individual bond.  The area potential can be expressed as 

,                               (S9)
𝑈𝑎𝑟𝑒𝑎 =  

𝑘𝑎(𝐴𝑡 ‒ 𝐴0
𝑡)2

2𝐴0
𝑡

+  

𝑁𝑎

∑
𝑖 = 1

𝑘𝑑(𝐴𝑖 ‒ 𝐴0
𝑖)2

2𝐴0
𝑖

where and  are global and local area control coefficients for triangular elements, 𝑘𝑎 𝑘𝑑

respectively.  and  are the current total surface area of the NP and the local area for i-𝐴𝑡 𝐴𝑖

th individual triangular element, respectively, while  and  are equilibrium total surface 𝐴0
𝑡 𝐴0

𝑖

area of the NP and local surface area for i-th individual triangular element. 

With parameters involved in those two energy terms, the in-plane stretching modulus of 

the elastic NP can be determined as 4,  

 .                                    (S10)𝐾𝑠 = 𝑘𝑎 + 𝑘𝑑 + 3𝑘𝑏𝑜𝑛𝑑



The volume energy term  is expressed as:𝑈𝑣𝑜𝑙𝑢𝑚𝑒

                                           (S11)
𝑈𝑣𝑜𝑙𝑢𝑚𝑒 =

𝑘𝑉(𝑉 ‒ 𝑉0)2

2𝑉0

where  is the global volume constraint coefficient of triangular elements.  and  are 𝑘𝑉 𝑉 𝑉0

the volume of the elastic NP and its equilibrium value, respectively.

The bending energy term  can be determined as:𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔

                            (S12)
𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =

𝑁𝑜𝑏

∑
𝑖 = 1

𝑘𝑏𝑒𝑛𝑑(1 ‒ 𝑐𝑜𝑠⁡(𝜃𝑖 ‒ 𝜃0
𝑖))

where  is the number of bending elements,   is the bending constant of bending  𝑁𝑜𝑏 𝑘𝑏𝑒𝑛𝑑

elements,  is the dihedral angle of the i-th bending element, and  is the equilibrium 𝜃𝑖 𝜃0
𝑖

dihedral angle of the i-th individual bending element.

2. Effect of loading rate 
To better understand the effect of the tensile loading rate on the mechanical properties of 

solvent free NPC model, we have performed supplementary simulation (Figure S2) to with 

same input parameters except for the tensile rate for the NPC model with diameter as 

. It can be observed that the tensile rate plays an important role to mechanical stiffness 40 𝜎

of the NPC pore.
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Figure S2. Strain-stress curve for nuclear pore with  as  under various tensile rate 𝐷𝑝𝑜𝑟𝑒 40 𝜎
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3. Morphological changes of nuclear pores during tension

As shown in Figure S3, the nuclear pores experience morphological changes from cylinder-

like pores to the dumb-bell pores for nuclear pore complexes with different pore diameters 

Dpore. The dumb-bell pores have narrow necks due to the tension of the envelope plane.



Figure S3. Morphological changes under biaxial stretch of the nuclear pores with different 

pore diameters  .𝐷𝑝𝑜𝑟𝑒

3. Surface tension of solvent free NPC model
As noticed in snapshots embedded in Figure 2, beyond a critical stress or area per lipid, 

multiply damage spots can be nucleated and grow indefinitely to release the concentrated 

stress on the membrane plane. Lipid membrane stretching and damage opening is a critical 

factor to evaluate the structural stability of the solvent free NPC model. In order to 

quantitatively explain the damage generation on the nucleus biomembrane, the membrane 

tension is calculated and its evolution is examined (the bottom panel). The surface tension 

with a normal in the z-direction inside a nuclear membrane is characterized by the pressure 

tensor  using the following relation,10𝑃

𝛾 =

𝑍2

∫
𝑍1

[𝑃𝑁(𝑍) ‒ 𝑃𝑇(𝑍)]𝑑𝑍 (S13)

in which  is the surface tension,  is the pressure normal to the bilayer membrane, and 𝛾 𝑃𝑁

 is the tangential pressure along the bilayer surface. For particle simulations, this 𝑃𝑇

equation can be further simplified: 11

𝛾 = 𝐿𝑍[𝑃𝑍 ‒ (𝑃𝑋 + 𝑃𝑌)/2] (S14)

In this equation (S14),  is the size of simulation cell in the z-direction normal to the 𝐿𝑍

nuclear bilayer membrane and  is the pressure in the  direction. The nuclear 𝑃𝑖 𝑖 = 𝑥,𝑦,𝑧

bilayer membrane is initially in an equilibrium tensionless state. Take the pore with size 30

 for example (Figure S2), as the tension proceeds, multiply damage spots are nucleated 𝜎

on the nuclear membrane with the membrane tension up to , which agrees 0.45 𝑝𝑁/𝑛𝑚

with the original solvent free model for the bilayer membrane.3 The critical membrane 

tension required for damage spot nucleation under different NPC pore sizes indicates the 

inverse dependency of surface tension on the pore size; the larger the NPC pore on the 

nuclear membrane, the lower the critical surface tension required to damage spot 

nucleation. Previously, nanoscale stiffness topography analysis of the cytoplasmic side of 

the NPCs was performed using AFM nanoindentation, thus providing an estimate of the 

density of the NPC in the NE, the average indentation force and the stiffness of the 



membrane. The average force data measured and the stiffness calculated was in the order 

of [pN*nm–1].12, 13 Results from our model in Figure S2 is in agreement with the magnitude 

order from the experimental measurements. Both measurements from Figure 2 and Figure 

S2 and relevant comparisons with experimental data lend reasonable credence to support 

that our solvent free model is reliable to capture the mechanical properties of the NPC and 

NE.
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Figure S4. (a) The evolution of surface tension during the tensile process; (b) The 
maximum surface tension before the pore generation with regard to the pore size

4. Effect of surface modification on NP transport

In Figure 5, the dynamic NP transport process through the nuclear pore for different surface 

modification, namely  and 0.6 .  It can be seen that the time spent for the full NP 𝜖 = 0.4 𝜀 𝜀

transport process increases as the interbead interaction strength  increases. That could be 𝜖

attributed to the increasing nonlinear deformation of the nuclear pore complexes induced 

by the increasing interbead interaction strength , whuch holds the NP from detaching from 𝜖

the nuclear pore.



Figure S5. Effect of surface modification on dynamic NP transport process through the 

nuclear pore. (a)  ; (b) . 𝜖 = 0.4 𝜀  𝜖 = 0.6 𝜀

5. Effect of rigidity on spherical NP transport

As shown in Figure S6, the dynamic transport of elastic spherical NPs with different 

rigidity  have been shown. When the rigidity  is equal to 4, large deformation could 𝑘𝑛𝑝 𝑘𝑛𝑝

be observed during the interaction between the NP and the nuclear pore complex as shown 

in Figure S6(a). As the rigidity  increases, the nuclear envelopes experience larger 𝑘𝑛𝑝

morphological changes while the shape of spherical NPs undergo marginal changes. 

Consequently, the time spent for the full NP transport process increases due to the enhanced 

shape adaptability as the rigidity  decreases. 𝑘𝑛𝑝



Figure S6 Dynamic elastic NP transport process through the nuclear pore by varying the 

rigidity as (a) ; (b) , (c)  respectively. 𝑘𝑛𝑝 = 2 𝑘𝑛𝑝 = 4 𝑘𝑛𝑝 = 10

6. Effect of rigidity on 2D NP transport

Here to unveil the transport process of elastic NP, two-dimensional NP ( ) 100 𝜎 × 16 𝜎

with 1910 hexagonally connected beads is selected as the intrabead bonds stiffness ( ) 𝑘𝑛𝑝

are the only tunable mechanical parameter to obtain NP with various rigidities. For more 

details about the two-dimensional model, it can be referred to our previous studies of the 

characterization the NP. 14 As shown in Figure S7, the two-dimensional NP is horizontally 

placed  away from the nuclear midplane and follows the same simulation setup as 30 𝜎



previous implementations. When  is set to be , the two-dimensal NP cannot 𝑘𝑛𝑝
1 𝑘𝐵𝑇 𝜎2

maintain its two-dimensional features and pocesses large freedom of out-of-plane 

deformaiton. The soft NP exhibits kaleidoscopic morphologies to minimize the required 

passing energy. The softness of the two-dimensional NP allows itself to cater for the 

hyperbolic-like pore geometry and takes  for the entire passage through the nuclear 4950 𝜏

pore. When  is set to be  that is same order of bond stiffness of membrane 𝑘𝑛𝑝
50 𝑘𝐵𝑇 𝜎2

lipid, the NP can maintain its two-dimensional morphology when passing through the 

channel. It takes long time up to  for the narrow end to approach the pore entrance 2160 𝜏

as the two-dimensional NP with high length-width ratio had to piece into the nuclear pore 

via the narrow end. It is extremly time- and energy- consuming to pass through the channel 

from the wide end due to large deformation of the nuclear pore and comparable rigidity of 

the NP and nucleus. Due to large degree freedom of flexibility, the interaction between the 

flexible NP and nuclear pore is enhanced than that of rigid NP thus it takes longer time for 

the soft NP to pass through the nuclear pore.
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Figure S7. Dynamic two-dimensional NP transport process through the nuclear pore by 

varying the rigidity as (a) ; (b) , respectively. 𝑘𝑛𝑝 = 1 𝑘𝐵𝑇 𝜎2 𝑘𝑛𝑝 = 50 𝑘𝐵𝑇 𝜎2

To unfold the effect of NP’s flexibility on the transport process, NP’s geometrical 

variations during the whole transport process are sampled by achieving the intrabead 

distance distribution among the NP beads in  Figure S8(a). It can be seen that NP with 

 exhibits smaller intrabead distance and more severe defromation than the 
𝑘𝑛𝑝 = 1 𝑘𝐵𝑇 𝜎2

NP with  which indicates that NP’s rigidities can regulate the transport 
𝑘𝑛𝑝 = 50 𝑘𝐵𝑇 𝜎2

pathway via the in-plane and out-of-plane deformation. The deformable NP is capable of 

entering into the nucleusplam through self-adjusting its morphology when passing through 

the nuclear pore with limited size. Similarly, the rigidity effect of NP on the transport 

process can be further verified by the free energy profile in Figure S8(b). The free energy 

required to pass through the nuclear pore for the soft NP is less than that consumed by the 

rigid two-dimensional NP. Different from previous studies about the interaction between 



the soft NP and cell membrane,15 it shows that rigid NPs require less energy for membrane 

internalization than that for soft NPs while the soft NPs must overcome a larger free energy 

barrier during the wrapping process by the cell membrane. By reproducing the transport 

process of two dimensional NP through nuclear pore, it indicates that the rigidity of the NP 

is another important factor that determines the exchange process between the cytoplasm 

and nucleusplam. Our findings might provide a meaningful strategy to design the 

mechanically tunable drug delivery vehicle to target the nucleus. 
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