First-principles study on Small Polaron and Li diffusion in layered $LiCoO₂$

Seryung Ahn¹, Jiyeon Kim^{2,3}, Bongjae Kim⁴, Sooran Kim^{2*}

¹Department of Physics, Kyungpook National University, Daegu 41566, South Korea

²Department of Physics Education, Kyungpook National University, Daegu 41566, South Korea

³The Center for High Energy Physics, Kyungpook National University, Daegu 41566, South

Korea

⁴ Department of Physics, Kunsan National University, Gunsan 54150, Korea

* Corresponding author: sooran@knu.ac.kr

Fig. S1 Crystal structures of (a) $Li_{0.875}CoO_2$, (b) $Li_{0.75}CoO_2$, and (c) $Li_{0.5}CoO_2$. (d) The energy difference between polaron and non-polaron structures per formula unit depending on the Li composition.

We have investigated the energy difference between polaron and non-polaron structures, ΔE at the intermediate charge levels. Figure S1(a-c) shows the generated structures of $Li_{0.875}CoO_2$, $Li_{0.75}CoO_2$, and $Li_{0.5}CoO_2$. As in the case of $Li_{0.96}CoO_2$, the small polarons only appear in the magnetic structures, and the polaronic structures are energetically more stable regardless of Li composition as shown in Fig. S1(d). Also, note that the more the Li vacancies are the more stable the small polarons are. The energy difference between FM and AFM in $Li_{0.875}CoO_2$ is almost negligible, whose value is 0.2 meV/f.u.. Thus, the ΔE from the FM and AFM cases are almost the same as in Fig. S1.

2. Electronic structures of the AFM phase

Fig. S2 Projected density of states (PDOS) of 3*d* orbitals (a) Co³⁺ and (b) Co⁴⁺ in the AFM structure. (Inset) Charge density isosurface of CoO₆ octahedral t_{2g} hole band.

Figure S2 shows the electronic structure of $Co³⁺$ and $Co⁴⁺$ ions in the AFM phase. The partial density of states (DOS) and the charge density are nearly identical to FM in Fig. 4. This result is consistent with the energy calculation, which has an insignificant difference of 0.06 meV/f.u,. Like the electronic structure of FM, the t_{2g} orbitals of Co^{3+} are fully occupied with the low spin state whereas the unoccupied t_{2g} band appears in Co⁴⁺ ion. The AFM phase exbibits a band gap of 0.69 eV from the gap between t_{2g} orbitals of the Co⁴⁺ ion. The unoccupied Co⁴⁺ t_{2g} orbital is the a_{1g} orbital as indicated in the charge density. The charge density in Fig. S2(b) also shows the oxygen hole around $Co⁴⁺$.