Supporting Information

for

New accurate diabatic potential energy surfaces for the lowest two ¹A" states of H₂S and photodissociation dynamics in its first absorption band

Junjie Chen,¹ Hanzi Zhang,¹ Linsen Zhou,^{2,*} Xixi Hu, ^{3,4,*} and Daiqian Xie^{1,4}

¹Institute of Theoretical and Computational Chemistry, Key Laboratory of

Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing

University, Nanjing 210023, China

² Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.

³Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University,

Nanjing 210023, China

⁴ Hefei National Laboratory, Hefei 230088, China

*: Corresponding authors, zhoulinsen173@aliyun.com (L.Z.), xxhu@nju.edu.cn (X.H.)

Fig. S1 Diabatic transition dipole surface ($\mu d B$) for the $1^1B_1 \leftarrow \tilde{X}^1A_1$ transition as a function of two bond S-H lengths with the inter-bond angle θ_{HSH} fixed at 92.2°. The contour interval is 0.1 a.u.

Fig. S2 Contour plots of adiabatic PESs for the singlet (a)1 ${}^{1}A$ " and (b) $2{}^{1}A$ " states, 3D plots for the adiabatic PESs (c) and diagonal diabatic PESs(d) as a function of equivalent S-H bond lengths and inter-bond angle. The CI seam between the two PESs is shown by a solid black line.

Fig. S3 Adiabatic PESs for the $1^{1}A''$ and the $2^{1}A''$ PESs: (a) as a function of r_{SH1} and r_{SH2} , with bond angle fixed at θ_{HSH} =92.2°. (b) PESs as a function of r_{SH1} and θ_{HSH} , with the other SH bond fixed at 1.34 Å. The contour intervals are 0.2 eV for all panels.

Fig. S4 (a) Theoretical $SH(\tilde{X})$ vibrational distributions at three peak energies of the absorption spectrum. (b) Theoretical $SH(\tilde{X}, v = 0)$ rotational distributions at three peak energies of the absorption spectrum.

Fig. S5 (a) Calculated rotational state resolved anisotropy parameters β for SH($\tilde{X}, v = 0$) products at three peak energies of the absorption spectrum, and (b) angular distributions of recoiling H atom as a function of laboratory angle at three peak energies of the absorption spectrum. The inset shows calculated DCSs for SH(\tilde{X}) fragments at corresponding energy.