Supporting information

Role of Inorganic Layers on Polysulfide Decomposition at Sodium-Metal Anode Surfaces for Room Temperature Na/S Batteries

Sirisak Singsen^{†,‡}, Francisco Ospina-Acevedo[‡], Suwit Suthirakun[#], Pussana Hirunsit[⊥], Perla B. Balbuena^{‡,§,#,*}

[†]School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

[‡]Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States

[#]School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

¹National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand

[§]Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States

Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

*Email: balbuena@tamu.edu

Figure S1. Optimized Na₂S₈, ethylene carbonate (EC), and NaClO₄ molecule.

Figure S2. Initial configurations used for AIMD simulation of Na_2S_8 decomposition with the introduction of different SEI layers in EC solvent for (a) Na_2CO_3 , (b) Na_2O , and (c) NaOH. The wireframe structures are EC molecules. Code colors: Na atom; purple, F; blue, Cl; green, O; red, C; gay, and H; white.

Figure S3. (a) Initial Na₂CO₃/Na-metal configuration with the labels of the Na₂CO₃ layers (above) and the Na-metal layers (below). The corresponding charge distribution evolution in (b) the Na-metal layers and (c) the Na₂CO₃ layers. Code colors: Na atom; purple, F; blue, Cl; green, O; red, C; gay, and H; white.

Figure S4. (a) Initial NaOH/Na-metal configuration with the labels of the NaOH layers (above) and the Na-metal layers (below). The corresponding charge distribution evolution in (b) the Na-metal layers and (c) the NaOH layers. Code colors: Na atom; purple, F; blue, Cl; green, O; red, C; gay, and H; white.

Figure S5. (a) Initial Na₂O/Na-metal configuration with the labels of the Na₂O layers (above) and the Na-metal layers (below). The corresponding charge distribution evolution in (b) the Na-metal layers and (c) the Na₂O layers. Code colors: Na atom; purple, F; blue, Cl; green, O; red, C; gay, and H; white.

Structures	Lattice constants (Å)			Angle (°)		
	а	b	С	α	β	γ
Na-metal	3.582	3.582	6.080	90	90	120
Na ₂ CO ₃	8.749	5.259	5.911	90	103.4	90
NaOH	3.351	10.685	3.334	90	90	90
Na ₂ O	5.431	5.431	5.431	90	90	90

Table S1. Summary of geometric parameters of the bulk structures

Table S2. The summary of the lattice parameters of SEI layer supercells with different facets before making heterostructure and the lattice mismatch of the SEI layers against the Na-metal slab upon combining the Na-metal slab.

Materials	supercell	facet	lattice parameters (Å)		lattice mismatch (%)	
			a	b	a	b
Na ₂ CO ₃	2 × 2	(100)	10.52	11.82	-2.15	-4.74
	1 × 2	(010)	8.75	11.82	-18.60	-4.74
	1 × 2	(001)	8.75	10.52	-18.60	-15.25
	3 × 1	(110)	10.00	10.68	-6.95	-13.95
Na ₂ O	2 × 2	(100)	10.86	10.86	1.03	-12.45
	2 × 2	(010)	10.86	10.86	1.03	-12.50
	2 × 2	(001)	10.86	10.86	1.03	-12.50
	1 × 2	(110)	7.68	10.86	-28.54	-12.50
NaOH	3 × 1	(100)	10.3	12.56	-4.18	1.20
	3 × 3	(010)	10.3	10.68	-4.18	-13.90
	3 × 1	(001)	10.3	12.56	-4.18	1.20
	3 × 1	(110)	10.3	11.12	-4.18	-10.40

Figure S6. Three possible configurations of (a) Na_2CO_3 , (b) Na_2O , and (c) NaOH layer on the Na-metal surface. The values of the interface formation energies are shown in the parentheses. Color codes depict purple; Na, red; O, black; C, and white; H atoms.