Supporting Information for:

Unravelling the effect of paramagnetic Ni²⁺ on the ¹³C NMR shift tensor for carbonate in Mg_{2-x}Ni_xAl layered double hydroxides by quantum-chemical computations

Megha Mohan,^a Anders B. A. Andersen,^{bc} Jiri Mareš,^a Nicholai Daugaard Jensen,^b

Ulla Gro Nielsen^{b*} and Juha Vaara^{a*}

^aNMR Research Unit, P.O. Box 3000, FI-90014 University of Oulu, Finland

^bDepartment of Physics, Chemistry and Pharmacy, University of Southern Denmark,

Campusvej 55, DK-5230 Odense, Denmark

^cPresent address: Department for Nuclear Medicine, Herlev Hospital, Borgmester Ib Juuls Vej 71,

DK-2730 Herlev, Denmark

*Corresponding authors: juha.vaara@oulu.fi, ugn@sdu.dk

Contents

Figure S1. PXRD of the $Mg_{2-x}Ni_xAl$ -LDH samples.	ESI-3
Table S1. Optimised unit cell of the 1M structure.	ESI-4
Table S2. Optimised unit cell of the 2T structure.	ESI-6
Construction and optimisation of the finite cluster models for Ni ²⁺ susceptibility.	ESI-8
Figure S2. Atomic structure of the cluster models of the paramagnetic Ni site.	ESI-9
Table S3. Numbers of different centres in the cluster models of the paramagnetic Ni site.	ESI-9
Table S4. Atomic coordinates of the small cluster model of the paramagnetic Ni site.	ESI-10
Table S5. Atomic coordinates of the medium cluster model of the paramagnetic Ni site.	ESI-12
Table S6. Atomic coordinates of the large cluster model of the paramagnetic Ni site.	ESI-15
Figure S3. The calculated electronic spin densities for the cluster models of the paramagnetic Ni sit	e ESI-19
Table S7. Atomic positions (Å) of the cluster model used for the calculation of the local hyperfine	
contributions, σ_{con} , to the ¹³ C shielding tensor.	ESI-20
Figure S4. Experimental and simulated ¹³ C MAS NMR spectra of the Mg _{2-x} Ni _x Al-LDH samples.	ESI-23
Table S8. ¹³ C MAS NMR parameters reported in the Haeberlen convention.	ESI-24
Table S9. Calculated orbital shielding tensors.	ESI-25
Table S10. Calculated local hyperfine contributions to the ¹³ C NMR shielding tensor.	ESI-26
Anisotropic shift results from individual carbon sites (method 2).	ESI-27
Figure S5. ¹³ C chemical shift tensor eigenvalues following method 2.	ESI-28
Table S11. ¹³ C chemical shift eigenvalue data using method 2.	ESI-29
Anisotropic shift results from diagonalised average tensors (method 3).	ESI-30
Figure S6. ¹³ C chemical shift tensor eigenvalues following method 3.	ESI-31
Table S12. ¹³ C chemical shift eigenvalue data using method 3.	ESI-32
References	ESI-33

Figure S1. PXRD of the Mg_{2-x}Ni_xAl-LDH samples with x = 0.00 (Mg), 0.16 (A), 0.34 (B), 0.68 (D), 0.84 (E), and 2 (Ni). The diffractograms were collected on a Rigaku Miniflex600 X-ray diffractometer with Cu K α 1 radiation (1.5405 Å). The data were obtained in the 2 θ range from 3 to 90° with a step size of 0.02° and a scan rate of 5 or 10°/min. The broad backgrounds for A, B, D, and E originates from the glass powder beds used due to limited sample volume.

Table S1. Optimised unit cell of the 1M structure.

	Real Lattice	(A)		Reciprocal L	attice(1/A)	
	5.3307860	-9.1447812	-0.0114838	0.591368842	-0.342529859	0.142462751
	5.2701643	9.1067742	0.0191709	0.593838093	0.345989634	0.141440601
	-1.7762937	0.0173788	7.4152542	-0.000619428	-0.001424967	0.847187385
		Lattice	parameters(A)	Cell Angles		
		a =	10.585104	Alpha = 96.48	4702	
		b =	10.521803	beta = 96.91	1894	
		с =	7.625058	gamma = 119.70	2462	
	Ci	rront coll	uolumo -	717 /00150 7**	2	
	CL	irrent ceri	density =	1.308248 amu	с /А**3	
			=	2.172397 g/c	m^3	
86						
н	2 6463	2203983	0 0873673371	1 72136640	0.6	
Н	0.5993	3279618	0.0646410471	5.64665322	30	
Н	7.8430	883589	-0.4580351365	1.75500588	10	
Н	5.3037	464457	-4.3913554052	1.72784995	17	
Н	5.2706	5016174	4.4786695651	1.72285951	56	
Н	5.9024	764371	-0.2148877247	5.73145775	28	
Н	3.2634	614022	-4.4109506036	5.67526554	37	
Н	3.2728	906219	4.5184844335	5.68876836	99	
Н	2.4992	2834936	3.1179427752	1.73195538	80	
Н	0.8591	123858	3.1201476524	5.67463189	89	
Н	0.8291	609685	-3.1290238626	5.66277308	66	
Н	2.5087	921175	-3.1602358545	1.70511786	55	
Н	7.7480	469071	3.1183647772	1.77054949	53	
н	5.0437	295770	-1.4252/99562	1./6//24//	38	
п	5.1000	200949	3 200217881/	5 71933151	25	
н	3 3700	1183257	-1 4035810853	5 69012551	49	
н	3.5408	128988	7.6153250196	5.66802102	19	
Н	6.1074	289411	-3.3148726919	5.71328272	59	
Н	3.6243	8692997	-7.6226923509	5.60124358	28	
Н	3.5135	034345	1.4126999360	5.70630059	69	
Н	7.7566	5315713	-3.3099081819	1.72540810	01	
Н	5.2825	577598	-7.5690584262	1.68929346	51	
Н	5.2015	164602	1.3818251761	1.76839775	22	
H	3.5334	1044667	-0.3776942149	-0.05331616	88	
н	3.2180	1503657	1.2022223378	-0.04849931	38	
н	9.2002	20/1191 1013015	1 2734040962	0.01729902	28	
н	6 5470	1453953	6 9939348538	-0 00005461	58	
н	5.2385	5771644	6.1318870774	-0.01634237	66	
Н	8.0556	5700124	-2.0527849068	0.05966806	37	
Н	6.6007	106539	-1.5554416610	0.10669399	62	
Н	6.6298	8603444	-6.3578635085	-0.05701665	04	
Н	5.2857	941919	-5.5801380443	-0.03988743	27	
Η	6.6334	115072	1.3410534807	-0.00680485	31	
Н	5.6055	5789752	0.1581555648	0.01372342	27	
С	3.5235	464666	4.3154378279	0.02872899	52	
0	4.2081	082052	-2.8109567378	-0.00340423	11	
0	2.43/5	00/3/13	3.1330142008	2./1320242	07	
0	0.7802	.913091 7562189	-3 1393377604	4.09555542	59	
0	2.4698	3052045	-3.1437458133	2.68870664	31	
õ	7.7234	127704	3.1306562397	2.74448221	05	
0	5.1203	3238431	-1.4153370148	2.74828545	56	
0	5.0766	5184039	7.6904564569	2.65616812	49	
0	6.0929	403083	3.1353972008	4.75416626	57	
0	3.4396	5479507	-1.4211222852	4.71053295	62	
0	3.4392	2367622	7.6959233183	4.68619399	96	
0	6.1141	.044878	-3.1843701189	4.73663847	43	
0	3.4905	030804	-/./344018895	4.64100515	20	
0	3.4454	1316233	1.4129329248 _3 1674330535	4./2336596 2 70000761	02 76	
0	7.74U3 5.1270	2862501	-7.6934155836	2.70090761 2.64579379	83	
õ	5.1185	5961733	1.4070233418	2.74911011	71	
0	2.6415	5949548	0.0074684348	2.70548041	38	
0	0.6019	9553115	-0.0005810187	4.66136401	24	
0	7.9370	963512	-0.0132813821	2.63896170	30	
0	5.2974	216693	-4.5582790287	2.69572431	87	

0	5.2815391635	4.5325581918	2.7089046677
0	5.9198403534	-0.0289614582	4.7697627406
0	3.2747994930	-4.5640226851	4.7043528793
0	3.2663836269	4.5508608100	4.7021054814
0	4.8117299506	4.4509226791	0.0126337278
0	2.9895709551	3.1147544892	0.0083910335
0	2.7487227104	5.3448938724	0.0459658559
0	4.9845073082	-3.8286936365	-0.0107954743
0	2.9258383812	-2.9131543614	-0.0296987719
0	4.7553988269	-1.5943575060	0.0242453544
0	2.8009247253	0.3070804991	-0.0393492979
0	8.2850102893	1.8306952640	0.3413197494
0	5.5625680360	7.0851230145	-0.0263838170
0	7.5323876546	-1.2093583018	0.1221440316
0	5.6359275294	-6.5069559564	-0.0793170944
0	5.6653949580	1.1329532365	0.0144859365
Mg	1.6293764266	1.5209239169	3.7121578244
Mg	1.6264854698	-1.5176757412	3.6642495696
Mg	6.9143432831	1.4896013585	3.7662928347
Mg	4.2900731522	-3.0479747840	3.7335473463
Mg	4.2561126677	6.0632249972	3.6805230633
Mg	6.9299089675	-1.5623590310	3.7663604843
Mg	4.3031985055	-6.0712648962	3.6843179738
Mg	4.2604843991	3.0345838524	3.7135907189
Al	-1.0091243524	-0.0136703837	3.6365397755
Al	4.2689201233	-0.0057404403	3.7302420314
Al	1.6379543088	-4.5414239620	3.6934028357
Al	1.6142256016	4.5586452230	3.7098346191

Table S2. Optimised unit cell of the 2T structure.

	Real Lattice	e (A)		Reciprocal	Lattice(1/A)	
	9.1830756	-5.3065451	0.0008811	0.684757970	0.000942022	-0.000061789
	0.0013534	-0.0002036	14.9960022	-0.000043505	-0.000005714	0.418990693
	0.0010001	0.0002000	11.00000000	0.000010000	0.000000,11	0.120000000
		Lattice	parameters(A)	Cell Angles		
		a =	10.606050	Alpha = 90.00	0012	
		= a	14.996002	gamma = 120.10	0782	
		C	11.00002	gamma 120.10	0,02	
	C	Current cell	volume =	1456.905439 A**	3	
			density =	1.288542 amu	/A**3	
			=	2.139674 g/c	m^3	
172						
Н	1.464	3807781	-0.7543344633	1.97171226	19	
Η	4.682	9594861	1.0176228654	9.50872198	89	
H	1.510	5440548	4.6883722882	5.50427678	12	
н u	3.20/	5044729	1.9441235405	J.JZZ4Z3/0 13 01305206	49 25	
н	0.225	3943366	1 7201248169	5 51512331	40	
Н	4.619	4726633	-0.8959629668	1.95662727	59	
Н	0.225	1324623	3.6838857833	12.99707206	07	
Η	3.181	3537046	-1.7442555852	9.46800007	92	
Η	3.276	57266062	3.5474661472	13.01083020	15	
H	3.266	5840929	1.9441454592	1.96443917	53	
H U	1.513	6760070	U.9U94125831 1 0133030134	9.46943098	20	
Н	6.056	2046504	-3.3078793198	2.00022277	88	
Н	1.509	8693181	4.6885621215	1.98216586	00	
Н	9.290	1190158	3.7780627978	9.48536580	92	
Η	9.407	4085450	-1.6226926284	9.48614197	60	
H	4.571	4013160	6.3500074864	9.43399155	62	
H U	6.042	23449859	/.2800359421 1 0135107705	5.4869/919	10	
Н	1.450	4714273	9.8336030117	5.51474336	80	
Н	7.835	3787704	4.4117756790	5.50997217	95	
Н	7.940	2203095	-0.8549456717	5.54618290	91	
Η	3.141	9102169	7.2308075701	5.47972746	63	
H	5.995	9747361	3.6137037133	12.99242276	62	
H	6.064 1 525	21/0612	-1.9226980686	13.00620848	85	
л Н	4 692	2140013	4 2907234751	5 49372310	93 46	
Н	4.620	1374226	-0.8960424700	5.53032584	93	
Н	-0.068	2978514	6.9883994311	5.53955323	68	
Н	9.114	1809943	1.6819347088	1.94765007	90	
Η	9.407	6404504	-3.5862989522	1.97187494	92	
Н	4.691	.8285725	4.2910329194	1.99337562	50	
н н	4.572	2383838323	0.3501958153 1 0175003540	12 97432329	34 65	
Н	0.107	8098189	9.0844013411	12.99783261	60	
Н	7.904	7193728	0.9198287577	9.51441426	64	
Η	7.812	9355916	-4.4478667721	9.45345221	31	
Η	3.275	9308070	3.5477849386	9.47202702	12	
H	7.799	3377605	6.1402951616	13.03020609	55	
H U	7.905	7922084	0.9198169858	12.96941076	83 13	
Н	7.834	6870795	4.4119002802	1.97765965	06	
Н	7.939	2277933	-0.8546390317	1.94159270	16	
Н	3.141	1254715	7.2308667932	2.00707792	01	
Η	5.995	1645051	3.6135490652	9.49105573	54	
H	6.063	37972272	-1.9226965644	9.47700469	73	
H P	1.534	1438689/ 1024571	0.2549658U51	9.46888085	0∠ 46	
л Н	4.935	7821003	-0.3336167053	3.74358081		
H	9.205	9508045	-0.6958801080	3.74387164	50	
Н	8.891	2856603	-2.2119579614	3.74410736	23	
Η	1.761	9528073	8.6739501553	3.74326911	75	
H	0.349	3446464	9.5031486482	3.74348370	50	
H	6.808	4317160	8.4208430771	3.74361951	65 25	
н н	5.270	14U9/144 39927116	8,465/1/2182 3 00270/73/9	3./4366901 3.7/376015	∠⊃ 01	
H	6.654	9169584	3.9128460164	3.74386960	80	
		-	· · · • • •			

Н	1.7916657099	2.1950187487	3.7431166972
ц	1 0086801803	0 7991185//2	3 7/3027/095
п	1.0900001095	0./991103442	5.7450274095
H	6.9286408922	-2.9978315246	11.2417631073
Н	5.4159748637	-3.2057989241	11.2417973221
ц	2 77/7329563	6 223/38019/	11 2/15035602
11	2.1141323303	0.2234300194	11.2415055002
H	1.9972847346	7.5827743151	11.2416705879
Н	9.2875269746	1.1092800620	11.2421592949
U	0 2251127206	2 2005632030	11 2422009369
п	0.323112/390	2.2093032939	11.2422000300
H	8.4800124626	5.3001980092	11.2419443737
н	6.8868079789	5.3177019979	11.2420987527
	F F1 C000 C011	0.01750077	11 0410536067
н	5.5160896011	-0.3481/5263/	11.24185/696/
H	3.9750390176	-0.2296434974	11.2419108301
н	0 9516032921	2 3616767559	11 2415068722
	0.5510052521	2.3010707333	11.2415000722
Н	1.7415572798	3.6974759878	11.2414726992
С	1.2833423081	6.5547971142	3.7430690187
Ċ	4 5225471622	1 6765242601	11 2417742020
C	4.55254/1022	4.0/03342001	11.241/743020
С	4.7176303135	2.5739528775	3.7435991541
C	1 5696007700	-0 6401385449	11 2413881899
0	1.4006510500	0.0101000119	11.2110001099
0	1.4996513502	-0./41/839394	0.98804/22/4
0	4.6483634561	1.0720469494	8.5257435651
0	1 4761401494	1 5169057269	6 1770967616
0	1.4/01401404	4.5400057200	0.4770907010
0	3.2385892170	1.8821701872	6.5028976685
0	1 4904790930	0 9023526816	13 9952196595
0	0.0000000	1 7101000000	10.9902190099
U	0.00/85/1245	T.\TAT08A830	0.4813/91156
0	4.6638736918	-0.9308930247	0.9754081093
\circ	0 0915160063	3 715023/070	13 0707102010
0	0.0013100003	5./1592549/0	13.9/0/192010
0	3.2276576593	-1.7730851342	8.4900696634
\cap	3 2292417461	3 5436480205	13 9932544670
0	0.0070546000	1.0000400203	13.3332344070
0	3.23/8546889	1.8822428011	0.9839/20434
0	1.4893681995	0.9023394336	8.4872635591
0	6 0004504051	1 0010070067	0 0560205500
0	0.0924334231	1.00120/000/	0.9300293309
0	6.0789248407	-3.4015523276	1.0192043421
0	1 4753218904	4 5469581887	1 0093443604
0	2.2705210301	2 7127210005	2.00000110001
0	9.2425860131	3./13/310225	8.50636136/1
0	9.2637475052	-1.5906762183	8.5125246372
0	1 6120065501	6 3500116093	0 1566012270
0	4.0429905504	0.5590110905	0.4300042279
0	6.0651191013	7.1862662469	6.4680036407
0	6.0931187361	1.8812225456	6.5304930639
0	1 4057000776	0.0461625701	6.0001100170
0	1.485/820//6	9.8461635781	6.49841041/8
0	7.8253324551	4.5134509525	6.4898410335
0	7 82/1282969	-0 7612099162	6 5159525288
0	1.0241202909	0.7012055102	0.5155525200
0	3.2146996867	7.1969440393	6.4572375562
0	6.0733103847	3.5405072356	13,9693600502
0	6.0730030017	1 770210072000	10.000000000
0	6.0/39932038	-1.//93189/92	13.9/83880269
0	1.4989725589	6.1910162647	13.9951979349
0	4 6502252329	1 3/1/085999	6 1751102969
0	4.0302232323	4.5414005555	0.4/54102505
0	4.6645712195	-0.9309869398	6.5115312160
0	0.0370130440	7.0087220026	6.5175382664
0	0.03/0100110	1 70007120020	0.0170502001
0	9.2193483613	1./022/13932	0.9696598013
0	9.2501118573	-3.5872418355	1.0056126249
0	4 6493961302	4 3415928170	1 0116901071
Š	1.04000101002		T.0TT00010/1
0	4.6440185516	6.3591353975	14.0264052659
0	4.6494109177	1.0719553865	13,9573412600
\circ	0 0606002007	0.000001000	13 0760550700
-	0.000009290/	2.0200331003	13.9/00332/20
0	7.8232063892	0.8640851725	8.5348842191
0	7.8234009427	-4,4113483872	8,4676719116
-	2 2002426042	2 5427461720	0 400000000
U	3.2203436040	3.343/461/09	8.4896290054
0	7.8098945269	6.1767385893	14.0159846594
0	7 8242716016	N 8639817819	13 9489577831
Š	· • • • • • • • • • • • • • • • • • • •	0.0000047019	10.000001
0	3.2141686921	8.8148617918	13.9927091557
0	7.8245770816	4.5135454681	0.9978186232
0	7 8232101670	-0 7600070110	0 071077700
~	1.0232404070	0.1009912112	0.5/102/2/09
0	3.2139928189	7.1970798324	1.0295459450
0	6.0722865161	3.5406025280	8.5141087378
-	C 070014000C	1 7704050140	0 5040040040
U	0.0/29149296	-1.//94053140	8.3048349349
0	1.4980614382	6.1910526496	8.4873840682
0	2 6208086707	-1 4108575000	11 2416782177
-	4. 2270000/0/	T. HIGO 1000	11 041 00000
0	4.33/8988420	5.9848129109	11.2416665060
0	0.3827559564	-1.1914591027	11.2410401649
0	1 6982929656	0 6360563071	11 2/1202000
-	1.0002020000	0.000000/1	11.2713030000
0	3.5184165526	3.8904605342	11.2415987085⊥
0	5.7391978653	4.2195089595	11.2421088841
0	7 60/0071000	E 0/10000100	11 0/10050041
0	1.0940U/1U23	J.9412200100	11.2419032341
0			11 2416064304
	1.8239622592	0.39330/0244	11.2410004304
0	8.3139197821	1.3114540613	11.2422575710
0	1.8239622592 8.3139197821	1.3114540613	11.2422575710
0	1.8239622592 8.3139197821 6.0917845490	1.3114540613 -2.4702058591	11.2410563479 11.2419563479

0	0.0656377152	6.9945325959	3.7430756404
0	5.6405886036	1.6432922634	3.7436619375
0	1.5084330600	5.2846791421	3.7429520777
0	3.4746284839	2.2182976382	3.7435307568
0	5.0722415199	3.8147601195	3.7437435370
0	8.4186418723	-1.3455669132	3.7439787082
0	1.3171500357	9.6825845587	3.7434322993
0	4.4160760175	-0.5851950843	3.7433959679
0	7.6824222399	3.9449710667	3.7438924915
0	0.8893716081	1.7708845720	3.7430477781
0	6.0227166540	7.8232558866	3.7436042516
0	4.8054908529	0.3207310811	11.2418914763
0	0.8153770285	3.3396734724	11.2415336480
Mg	1.6035949728	2.7227555213	14.9973585085
Mg	1.6028432010	2.7228003047	7.4852241039
Mg	3.1312401364	0.0719159673	7.5135136549
Mg	3.1306830949	0.0720249574	-0.0268256594
Mg	6.1814686915	5.3526031683	15.0381634714
Mg	6.1884889449	0.0606072827	14.9428296598
Mg	1.5813018137	8.0106605107	15.0076345228
Mg	6.1806440655	5.3526662686	7.4451725021
Mg	6.1876557226	0.0606027568	7.5403153300
Mg	1.5804755654	8.0107671022	7.4749241013
Mg	7.7083822701	2.7035489412	7.5426253405
Mg	7.7199099703	-2.5889304592	7.4989152006
Mg	3.1202119250	5.3579700291	7.4497195740
Mg	7.7078799475	2.7036752912	-0.0549094556
Mg	7.7193778617	-2.5887660248	-0.0113297542
Mg	3.1196099966	5.3581823719	0.0368599452
Al	0.0686264799	0.0720329335	0.0003845073
Al	0.0691538243	0.0719028913	7.4856815521
Al	4.6547669332	2.7097028835	-0.0292108829
Al	4.6592080456	-2.5845612153	0.0160625113
Al	0.0629683558	5.3644481378	-0.0352116124
Al	4.6553101772	2.7095649618	7.5163643915
Al	4.6597668461	-2.5847121184	7.4708862279
Al	0.0635183689	5.3642524239	7.5215704346

Construction and optimisation of the finite cluster models for Ni²⁺ susceptibility

The fractional nuclear charges and number of electrons for each of the pseudohydrogen were fixed so that the formal valence of all the real cluster atoms was retained, despite that the bonds to the next LDH atoms at the perimeter of the cluster were removed. The atomic structures for the three models are displayed in Figure S2, Table S3 summarises the number of atoms and electrons for each, and the coordinates for the clusters are presented in Tables S4, S5 and S6. The resulting, terminated cluster models were geometry-optimised using the Turbomole code¹ at the DFT level with the PBE0 functional,² empirical D3(BJ) dispersion corrections,^{3,4} and the Stuttgart-Cologne quasirelativistic ECP10MDF effective core potentials⁵ with corresponding valence basis sets applied to the metal sites, def2-TZVP all-electron basis set⁶ to the other real atoms of the system, and def2-SV(P) for the terminating pseudohydrogens. The pseudohydrogen positions were kept fixed while the positions of the real cluster atoms were relaxed.

Figure S2. Atomic structure of the (a) small, (b) medium and (c) large cluster models of the paramagnetic Ni centre in the LDH layer. Ni in yellow, Al in cyan, Mg in grey, O in red and H in white.

Table S3. The number of real atoms N_{at} , the number of electrons N_e , the number of each element $N_{\text{Ni/Al/Mg/O/H}}$, the number of pseudohydrogen termination atoms $N_{\text{H*}}$ and the total charge q in the cluster models of the paramagnetic Ni centre in the LDH layer.

Model	N_{at}	N_e	$N_{ m Ni}$	$N_{\rm Al}$	$N_{\rm Mg}$	No	$N_{\rm H}$	N_{H^*}	q / e
small	55	326	1	3	3	24	24	30	+3
medium	175	746	1	6	12	54	54	48	+6
large	295	1346	1	12	24	96	96	66	+12

Table S4. Coordinates (.xyz format, in Å) of the small cluster model of Fig. S2(a) used in the calculation of the susceptibility of the paramagnetic Ni^{2+} site. The entries "z 0.33333" occurring after the coordinates of the pseudohydrogen centres indicate modified nuclear charge.

85					
Atom	х	У	Z		charge
0	-3.52646	0.00000	-0.99831		
0	-1.76323	3.05400	0.99832		
0	-3.52646	3.05400	-0.99831		
0	-3.52040	-3.05400	-0.99831		
н	0 88161	-3.03400	1 84913		
Н	0.88161	-1.52700	1.84913		
Н	-0.88162	1.52700	-1.84913		
Н	-0.88162	-1.52700	-1.84913		
0	1.76322	0.00000	-0.99831		
0	0.88161	-4.58100	0.99832		
0	0.88161	-1.52700	0.99832		
0	3.52645	3.05400	0.99832		
H	-1./6323	0.00000	1.84913		
0	3.52645	-3 05400	0.99032		
Al	0.00000	-3.05400	0.00000		
0	-1.76323	0.00000	0.99832		
0	-1.76323	-3.05400	0.99832		
0	1.76322	3.05400	-0.99831		
0	-4.40807	-1.52700	0.99832		
0	-4.40807	1.52700	0.99832		
Ni	0.00000	0.00000	0.00000		
0	0.88161	1.52700	0.99832		
мg	0.00000	3.05400	-1 9/013		
0	4 40807	-1 52700	-0.99831		
Al	2.64484	1.52700	0.00000		
Mq	2.64484	-1.52700	0.00000		
Mg	-2.64485	-1.52700	0.0000		
Al	-2.64485	1.52700	0.0000		
0	-0.88162	4.58100	-0.99831		
0	-0.88162	-1.52700	-0.99831		
0	-0.88162	1.52700	-0.99831		
0	-0.88162	-4.58100	-0.99831		
0	4 40807	1 52700	-0.99831		
Н	-4.40536	0.00000	-0.50069	z	0.33333
Н	-3.52646	0.00000	-2.00831		
Н	-1.76323	3.05400	2.00832		
Н	-2.20268	3.81515	0.50070	z	0.33333
Н	-4.40536	3.05400	-0.50069	Z	0.33333
H	-3.08701	3.81515	-0.50069	Z	0.33333
H	-3.52646	3.05400	-2.0083		
H U	2 20267	-3.05400	-2.00831	-	0 22222
н	-4.84752	0.76585	0.50070	2 7.	0.33333
Н	-4.40807	1.52700	2.00832	_	
Н	-4.84752	2.28815	0.50070	z	0.33333
Н	0.44216	-5.34215	0.50069	z	0.33333
Н	1.76051	-4.58100	0.50070	Z	0.33333
Н	0.88161	-4.58100	2.00832		
H	-3.52646	-3.05400	-2.00831		
H	-3.08/01	-3.81515	-0.50069	z	0.33333
H	3.52645	0.00000	2.00832	7	0.00000
н	4.40535	0.00000	0.50070	Z	0.33333
Н	-4.84752	-0.76585	0.50070	Z	0.33333
Н	-4.40807	-1.52700	2.00832		
Н	-4.84752	-2.28815	0.50070	Z	0.33333
H	1.76322	3.05400	-2.00831		
н	2.20267	3.81515	-0.50069	Ζ	0.33333
H U	0.44216	5.34215	0.50069	Ζ	0.33333
н Н	1 76051	4.50100	2.00032 0 50070	7	0 33333
H	-0.44217	5.34215	-0.50069	Z	0.333333

-0.88162	4.58100	-2.00831		
-1.76052	4.58100	-0.50069	Z	0.33333
3.08700	-3.81515	0.50069	Z	0.33333
3.52645	-3.05400	2.00832		
4.40535	-3.05400	0.50070	Z	0.33333
3.52645	3.05400	2.00832		
4.40535	3.05400	0.50070	Z	0.33333
3.08700	3.81515	0.50069	Z	0.33333
-0.44217	-5.34215	-0.50069	Z	0.33333
-1.76052	-4.58100	-0.50069	Z	0.33333
-0.88162	-4.58100	-2.00831		
4.84752	-2.28815	-0.50069	Z	0.33333
4.84752	-0.76585	-0.50069	Z	0.33333
4.40807	-1.52700	-2.00831		
-1.76323	-3.05400	2.00832		
-2.20268	-3.81515	0.50070	Z	0.33333
4.84752	2.28815	-0.50069	Z	0.33333
4.84752	0.76585	-0.50069	Z	0.33333
4.40807	1.52700	-2.00831		
	-0.88162 -1.76052 3.08700 3.52645 4.40535 3.52645 4.40535 3.08700 -0.44217 -1.76052 -0.88162 4.84752 4.84	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S5. Coordinates (.xyz format, in Å) of the medium cluster model of Fig. S2(b) used in the calculation of the susceptibility of the paramagnetic Ni^{2+} site. The entries "z 0.33333" occurring after the coordinates of the pseudohydrogen centres indicate modified nuclear charge.

175				
Ator	l X	У	Z	charge
0	7.0529100	0.0000000	-0.9983100	
Н	3.5264500	0.0000000	1.8491300	
н	1.7632200	0.0000000	-1.8491300	
н	-1 7632300	0 0000000	1 8491300	
11	2 5264500	2 0540000	1 0401200	
п	3.5264500	3.0340000	1.0491300	
0	3.5264500	3.0540000	0.9983200	
Н	3.5264500	-3.0540000	1.8491300	
0	3.5264500	6.1080000	0.9983200	
0	-1.7632300	-6.1080000	0.9983200	
0	6.1712900	4.5810000	0.9983200	
Н	-0.8816200	1.5270000	-1.8491300	
0	-3 5264600	-6 1080000	-0 9983100	
0	-0.9916200	1 5270000	_0 0093100	
0	-0.0010200	1.5270000	-0.9903100	
0	-4.4080700	1.52/0000	0.9983200	
0	-0.8816200	4.5810000	-0.9983100	
0	-0.8816200	7.6350000	-0.9983100	
Н	4.4080700	-1.5270000	-1.8491300	
Н	-3.5264600	3.0540000	-1.8491300	
Н	-3.5264600	0.0000000	-1.8491300	
0	4.4080700	4.5810000	-0.9983100	
н	-4 4080700	-1 5270000	1 8491300	
0	1.1000700	-1 5270000	_0 9983100	
0	7.0520100	-1.5270000	-0.9903100	
0	-7.0529100	-3.0540000	0.9983200	
0	-7.0529100	3.0540000	0.9983200	
0	0.8816100	1.5270000	0.9983200	
Н	-4.4080700	1.5270000	1.8491300	
0	4.4080700	1.5270000	-0.9983100	
0	-3.5264600	3.0540000	-0.9983100	
0	0.8816100	4.5810000	0.9983200	
0	0 8816100	-1 5270000	0 9983200	
0	0.8816100	-7 6350000	0 0083200	
0	7 0520100	2 0540000	0.0000200	
0	1.0529100	3.0540000	-0.9983100	
Н	-1./632300	3.0540000	1.8491300	
0	7.0529100	-3.0540000	-0.9983100	
Н	1.7632200	3.0540000	-1.8491300	
Н	1.7632200	-3.0540000	-1.8491300	
0	-6.1713000	-4.5810000	-0.9983100	
0	-6.1713000	1.5270000	-0.9983100	
0	3.5264500	-3.0540000	0.9983200	
н	-0 8816200	4 5810000	-1 8491300	
11	0.0016200	1 5270000	1 0401200	
п	-0.0010200	-1.5270000	1 0401200	
н	-0.8816200	-4.5810000	-1.8491300	
0	3.5264500	0.0000000	0.9983200	
Al	0.0000000	3.0540000	0.0000000	
Ni	0.0000000	0.0000000	0.0000000	
0	-1.7632300	6.1080000	0.9983200	
0	-1.7632300	-3.0540000	0.9983200	
Ma	0.0000000	6.1080000	0.0000000	
Μα	0.000000	-3.0540000	0.000000	
0	-4 4080700	-4 5810000	0 9983200	
0	-0.9916200	-4 5910000	_0 0093100	
0	-0.0010200	-4.3810000	-0.9963100	
AL	0.0000000	-6.1080000	0.0000000	
0	-1.7632300	3.0540000	0.9983200	
0	-1.7632300	0.0000000	0.9983200	
0	6.1712900	-4.5810000	0.9983200	
0	6.1712900	-1.5270000	0.9983200	
Н	4.4080700	1.5270000	-1.8491300	
0	-6.1713000	4.5810000	-0.9983100	
Ĥ	-3.5264600	-3.0540000	-1.8491300	
0	-4 4080700	-1 5270000	U 0083000	
0	1.1000/00	_1 5010000	0 0000000	
0	0.0010100	4 E010000	0.0000000	
0	-4.4080/00	4.5810000	0.9983200	
0	3.5264500	-6.1080000	0.9983200	
0	-0.8816200	-7.6350000	-0.9983100	
Mg	2.6448400	4.5810000	0.0000000	
Al	2.6448400	-1.5270000	0.0000000	

Mq	2.6448400	1.5270000	0.0000000		
Mg	2.6448400	-4.5810000	0.0000000		
0	-3.5264600	6.1080000	-0.9983100		
Mg	5.2896800	0.0000000	0.0000000		
Mg	-2.6448500	4.5810000	0.0000000		
Al	-2.6448500	-1.5270000	0.0000000		
Mg	-2.6448500	1.5270000	0.0000000		
0	-0.8816200	-1.5270000	-0.9983100		
Mg	-2.6448500	-4.5810000	0.0000000		
Mg	-5.2896900	0.0000000	0.0000000		
Н	0.8816100	1.5270000	1.8491300		
Mg	5.2896800	-3.0540000	0.0000000		
Н	0.8816100	-4.5810000	1.8491300		
Н	0.8816100	-1.5270000	1.8491300		
Al	5.2896800	3.0540000	0.0000000		
Н	0.8816100	4.5810000	1.8491300		
Al	-5.2896900	3.0540000	0.0000000		
0	-3.5264600	-3.0540000	-0.9983100		
0	-3.5264600	0.0000000	-0.9983100		
0	-7.0529100	0.0000000	0.9983200		
Ma	-5.2896900	-3.0540000	0.0000000		
н	-1.7632300	-3.0540000	1.8491300		
0	-6.1713000	-1.5270000	-0.9983100		
0	1.7632200	-3.0540000	-0.9983100		
0	1.7632200	3.0540000	-0.9983100		
0	1.7632200	0.0000000	-0.9983100		
0	1 7632200	6 1080000	-0 9983100		
0	1 7632200	-6 1080000	-0 9983100		
0	4 4080700	-4 5810000	-0 9983100		
0	0 8816100	7 6350000	0.9983200		
0	6 1712900	1 5270000	0 9983200		
н	4 4053527	6 1080000	0.5006957	7	0 33333
и Ц	3 0870003	6 8691525	0.5006948		0.33333
и Ц	3 5264500	6 1080000	2 0083200	2	0.555555
и Ц	-2 2026837	-6 8691509	0 5006958	7	0 33333
п u	-2.2020037	-6.1090000	2 0003200	2	0.55555
п	-1.7032300	4 5910000	2.0003200		
п	6.1/12900 5 7210402	4.JOLUUUU 5.2421525	2.0003200	-	0 22222
H	J./JL8403	3.3421323	0.5006948	z	0.33333
н	1.0501927	4.5810000	0.5006957	Z	0.33333
H	-4.84/523/	-5.3421509	0.5006958	Z	0.33333
н	-4.4080700	-4.5810000	2.0083200		0 00000
H	-4.84/523/	5.3421509	0.5006958	Z	0.33333
H	-4.4080/00	4.5810000	2.0083200		
H	-0.8816200	7.6350000	-2.0083100		
H	-1./605249	7.6350000	-0.5006894	Z	0.33333
Н	-0.4421652	8.396152/	-0.5006896	Z	0.33333
Н	-1.7605249	-7.6350000	-0.5006894	Z	0.33333
Н	-0.4421652	-8.3961527	-0.5006896	Z	0.33333
Н	-0.8816200	-7.6350000	-2.0083100		
H	3.5264500	-6.1080000	2.0083200		
H	4.4053527	-6.1080000	0.5006957	Z	0.333333
Н	3.0870003	-6.8691525	0.5006948	Z	0.33333
Н	4.4080700	4.5810000	-2.0083100		
Н	4.8475207	5.3421543	-0.5006885	Z	0.33333
Н	-7.4923637	-0.7611509	0.5006958	Z	0.33333
Н	-7.0529100	0.0000000	2.0083200		
Н	-7.4923637	0.7611509	0.5006958	Z	0.33333
Н	-7.4923637	-3.8151509	0.5006958	Z	0.33333
Н	-7.4923637	-2.2928491	0.5006958	Z	0.33333
Н	-7.0529100	-3.0540000	2.0083200		
Η	-7.4923637	3.8151509	0.5006958	Z	0.33333
Н	-7.0529100	3.0540000	2.0083200		
Η	-7.4923637	2.2928491	0.5006958	Z	0.33333
Н	4.8475207	-5.3421543	-0.5006885	Z	0.33333
Η	4.4080700	-4.5810000	-2.0083100		
Н	-3.5264600	-6.1080000	-2.0083100		
Н	-3.0870093	-6.8691543	-0.5006885	Z	0.33333
Н	-4.4053649	-6.1080000	-0.5006894	Z	0.33333
Н	-3.5264600	6.1080000	-2.0083100		
Н	-4.4053649	6.1080000	-0.5006894	Z	0.33333
Н	-3.0870093	6.8691543	-0.5006885	Z	0.33333
Н	7.4923607	3.8151543	-0.5006885	Z	0.33333
Н	7.4923607	2.2928457	-0.5006885	Z	0.33333
Н	7.0529100	3.0540000	-2.0083100		
Н	7.0529100	0.0000000	-2.0083100		
Н	7.4923607	-0.7611543	-0.5006885	Z	0.33333
Н	7.4923607	0.7611543	-0.5006885	Z	0.33333

Н	7.4923607	-2.2928457	-0.5006885	Z	0.33333
Η	7.4923607	-3.8151543	-0.5006885	Z	0.33333
Η	7.0529100	-3.0540000	-2.0083100		
Η	-6.1713000	1.5270000	-2.0083100		
Η	-7.0502049	1.5270000	-0.5006894	Z	0.33333
Н	-6.1713000	-4.5810000	-2.0083100		
Η	-7.0502049	-4.5810000	-0.5006894	Z	0.33333
Η	-5.7318493	-5.3421543	-0.5006885	Z	0.33333
Η	-5.7318493	5.3421543	-0.5006885	Z	0.33333
Η	-6.1713000	4.5810000	-2.0083100		
Η	-7.0502049	4.5810000	-0.5006894	Z	0.33333
Η	-7.0502049	-1.5270000	-0.5006894	Ζ	0.33333
Η	-6.1713000	-1.5270000	-2.0083100		
Η	-2.2026837	6.8691509	0.5006958	Z	0.33333
Η	-1.7632300	6.1080000	2.0083200		
Η	2.2026748	6.8691527	-0.5006896	Z	0.33333
Η	1.7632200	6.1080000	-2.0083100		
Η	1.7632200	-6.1080000	-2.0083100		
Η	2.2026748	-6.8691527	-0.5006896	Z	0.33333
Η	6.1712900	-4.5810000	2.0083200		
Η	7.0501927	-4.5810000	0.5006957	Ζ	0.33333
Η	5.7318403	-5.3421525	0.5006948	Ζ	0.33333
Η	7.0501927	-1.5270000	0.5006957	Z	0.33333
Η	6.1712900	-1.5270000	2.0083200		
Η	0.8816100	7.6350000	2.0083200		
Η	1.7605127	7.6350000	0.5006957	Z	0.33333
Η	0.4421603	8.3961525	0.5006948	Z	0.33333
Η	0.8816100	-7.6350000	2.0083200		
Η	0.4421603	-8.3961525	0.5006948	Ζ	0.33333
Η	1.7605127	-7.6350000	0.5006957	Z	0.33333
Η	7.0501927	1.5270000	0.5006957	Z	0.33333
Н	6.1712900	1.5270000	2.0083200		

Table S6. Coordinates (.xyz format, in Å) of the medium cluster model of Fig. S2(c) used in the calculation of the susceptibility of the paramagnetic Ni^{2+} site. The entries "z 0.33333" occurring after the coordinates of the pseudohydrogen centres indicate modified nuclear charge.

295				
Atom	ı x	У	Z	charge
Н	-0.8816100	7.6350000	-1.8491300	
0	9.6977600	-4.5810000	-0.9983200	
0	-3.5264500	0.0000000	-0.9983200	
Н	-3.5264500	6.1080000	-1.8491300	
0	-3.5264500	6.1080000	-0.9983200	
0	-3 5264500	-9 1620000	-0.9983200	
0	1 7632300	0 0000000	-0.9983200	
ц ц	-0.8816100	1 5270000	-1 8/91300	
0	1 7622200	6 1090000	1.0491300	
0	1.7032300	0.1000000	-0.9963200	
0	4.4000700	-7.8330000	-0.9963200	
0	1./632300	-9.1620000	-0.9983200	
Mg	-7.9345200	-1.5270000	0.0000000	
0	-6.1712900	4.5810000	-0.9983200	
0	-6.1712900	-7.6350000	-0.9983200	
0	-6.1712900	7.6350000	-0.9983200	
Н	1.7632300	0.0000000	-1.8491300	
0	-4.4080700	4.5810000	0.9983100	
0	-4.4080700	-7.6350000	0.9983100	
Н	-3.5264500	3.0540000	-1.8491300	
0	-4.4080700	1.5270000	0.9983100	
0	-4.4080700	-4.5810000	0.9983100	
0	4.4080700	4.5810000	-0.9983200	
0	4,4080700	-1.5270000	-0.9983200	
0	4 4080700	-4 5810000	-0 9983200	
0	-8 8161300	6 1080000	-0 9983200	
0	3 5264600	-9 1620000	0.0003100	
11	6 1712000	4 5910000	1 0401200	
п	-0.1/12900	4.3810000	-1.0491300	
0	3.5264600	6.1080000	0.9983100	
0	-4.4080/00	7.6350000	0.9983100	
0	3.5264600	-3.0540000	0.9983100	
0	-8.8161300	3.0540000	-0.9983200	
0	-8.8161300	-6.1080000	-0.9983200	
0	-8.8161300	-3.0540000	-0.9983200	
0	3.5264600	0.0000000	0.9983100	
0	-7.0529100	3.0540000	0.9983100	
0	7.0529100	6.1080000	-0.9983200	
0	-7.0529100	6.1080000	0.9983100	
0	7.0529100	-3.0540000	-0.9983200	
0	7.0529100	3.0540000	-0.9983200	
0	1.7632300	-3.0540000	-0.9983200	
0	6.1713000	4.5810000	0.9983100	
0	6.1713000	-4.5810000	0.9983100	
0	6.1713000	-7.6350000	0.9983100	
Н	-0.8816100	-7.6350000	-1.8491300	
0	6.1713000	-1.5270000	0.9983100	
0	-9.6977500	4.5810000	0.9983100	
0	-9.6977500	-4.5810000	0.9983100	
0	-7 0529100	-6 1080000	0 9983100	
0	8 8161400	6 1080000	0.9983100	
0	8 8161400	-6 1080000	0.9903100	
0	0.0101400	0.1000000	0.0000100	
0	0.0101400	2 0540000	0.9903100	
0	0.0101400	-3.0340000	0.9903100	
AL	-2.6448400	1.52/0000	0.0000000	
0	-1.7632200	-3.0540000	0.9983100	
Н	-1.7632200	6.1080000	1.8491300	
Mg	5.2896900	0.0000000	0.0000000	
0	0.8816200	-4.5810000	0.9983100	
0	0.8816200	4.5810000	0.9983100	
Н	1.7632300	3.0540000	-1.8491300	
Ni	0.000000	0.0000000	0.0000000	
Al	0.000000	-3.0540000	0.0000000	
0	-4.4080700	-1.5270000	0.9983100	
Mg	0.000000	3.0540000	0.0000000	
õ	3.5264600	-6.1080000	0.9983100	
0	3.5264600	3.0540000	0.9983100	
0	3.5264600	9.1620000	0.9983100	

Н	4.4080700	1.5270000	-1.8491300
н	4 4080700	4 5810000	-1 8491300
	1.1000700	1.5010000	1 0401200
н	4.4080700	-4.5810000	-1.8491300
Mg	0.0000000	-9.1620000	0.000000
Н	7.0529100	0.0000000	-1.8491300
	7 0520100	2 0540000	1 0401200
н	7.0529100	-3.0540000	-1.8491300
Н	4.4080700	-1.5270000	-1.8491300
Н	-0.8816100	-1.5270000	-1.8491300
\circ	6 1713000	7 6350000	0 0003100
0	0.1/15000	1.0330000	0.9903100
0	-9.6977500	-1.5270000	0.9983100
Al	-2.6448400	-7.6350000	0.000000
Ma	-2 6448400	4 5810000	0 0000000
ing	2.0110100	4.3010000	0.0000000
0	7.0529100	-6.1080000	-0.9983200
Μα	-2.6448400	-1.5270000	0.0000000
ц	0 9916200	_1 5910000	1 0/01300
п	0.0010200	-4.3810000	1.0491300
0	8.8161400	3.0540000	0.9983100
0	-7.0529100	0.0000000	0.9983100
ы	-3 5264500	0 0000000	_1 0/01300
п	-3.3204300	0.0000000	-1.0491300
Н	-3.5264500	-3.0540000	-1.8491300
Н	1,7632300	-3.0540000	-1.8491300
1.	7 0345300	4 5010000	0.0000000
мg	7.9345300	4.5810000	0.0000000
Н	0.8816200	7.6350000	1.8491300
н	0 8816200	1 5270000	1 8491300
Mar	0.0010200	1 5270000	1.0191900
мg	2.0440300	-1.52/0000	0.0000000
Н	-1.7632200	-6.1080000	1.8491300
Μα	2 6448500	-4 5810000	0 0000000
719	2.0110500	1.5010000	0.0000000
AT	2.0448500	1.52/0000	0.0000000
Mg	2.6448500	7.6350000	0.000000
н	7.0529100	3.0540000	-1.8491300
~ 1	F 200C000	C 100000	0.0000000
AT	-5.2896800	0.1080000	0.0000000
Al	-5.2896800	-3.0540000	0.0000000
н	-0.8816100	-4.5810000	-1.8491300
Ma	E 2006000	2 0540000	0.0000000
мg	-3.2090000	3.0340000	0.0000000
Mg	-5.2896800	-6.1080000	0.000000
Mα	-5.2896800	0.0000000	0.000000
Ma	5 2006000	-6 1090000	0 000000
Mg	5.2090900	-0.1000000	0.0000000
AL	5.2896900	-3.0540000	0.0000000
Al	-7.9345200	1.5270000	0.0000000
Mα	-7 9345200	-4 5810000	0 000000
1.19	7.0045200	4.5010000	0.0000000
Mg	-7.9345200	4.5810000	0.0000000
Н	-3.5264500	-6.1080000	-1.8491300
н	-6 1712900	1 5270000	-1 8491300
	0.1/12/00	1.5270000	1.0491900
AL	1.9345300	1.52/0000	0.0000000
Н	-6.1712900	-4.5810000	-1.8491300
Mα	7 9345300	-1 5270000	0 000000
119	7.0010000	1.5270000	0.0000000
мg	7.9345300	-4.5810000	0.0000000
0	-3.5264500	9.1620000	-0.9983200
\cap	4 4080700	1 5270000	-0 9983200
~	1.1000700	1.0270000	0.0000200
0	-3.5264500	-0.1080000	-0.9983200
0	-6.1712900	-4.5810000	-0.9983200
0	-0.8816100	4.5810000	-0.9983200
~	0.0010100	10 000000	0.000200
0	-0.8810100	T0.0890000	-0.9983200
0	-0.8816100	-4.5810000	-0.9983200
0	9.6977600	-1.5270000	-0.9983200
	4 4000700	1 5070000	1 0401200
п	-4.4080/00	-1.52/0000	1.0491300
Al	0.0000000	6.1080000	0.0000000
Mα	-2.6448400	-4.5810000	0.000000
11	1 7620200	6 1000000	1 0401200
п	1.1032300	0.1000000	-1.0491300
0	-9.6977500	1.5270000	0.9983100
Н	-0.8816100	4,5810000	-1.8491300
Me	0 6440500	1 6010000	1.0101000
мĝ	∠.0448500	4.5010000	0.0000000
Al	2.6448500	-7.6350000	0.000000
Н	6.1713000	4.5810000	1.8491300
 M	E 0000000	2 0 5 4 0 0 0 0	
мđ	5.2896900	3.0540000	0.0000000
0	-3.5264500	-3.0540000	-0.9983200
0	-8.8161300	0.0000000	-0.9983200
0	1 1000700	7 6350000	_0 0000000
0	4.4080/00	1.0330000	-0.9983200
0	-3.5264500	3.0540000	-0.9983200
0	1.7632300	3.0540000	-0.9983200
0	1 7632300	-6 1080000	-0 0083300
0	1.7052500	0.1000000	0.000200
Ο	1./632300	9.1620000	-0.9983200
0	-6.1712900	1.5270000	-0.9983200
0	-6 1712900	-1 5270000	-0 9983200
~	7 0500100	1.02/0000	0.0000100
U	-1.0229100	-3.0540000	0.9983100
Н	-1.7632200	3.0540000	1.8491300
н	-1.7632200	0.000000	1.8491300
	1.1002200	0.0000000	T.040100
0	1.0529100	0.0000000	-0.9983200

0	-0.8816100 -1.5270000 -0.9983200		
Н	1.7632300 -6.1080000 -1.8491300		
Al	5.2896900 6.1080000 0.0000000		
0	-0.8816100 -7.6350000 -0.9983200		
U U	-6.1712900 -1.5270000 -0.9985200		
0	-0.8816100 7.6350000 -0.9983200		
Н	0.8816200 4.5810000 1.8491300		
Н	0.8816200 -7.6350000 1.8491300		
0	6.1713000 1.5270000 0.9983100		
Н	0.8816200 -1.5270000 1.8491300		
0	-0.8816100 -10.6890000 -0.9983200		
0	-1.7632200 9.1620000 0.9983100		
0	-1.7632200 3.0540000 0.9983100		
0			
0	-1.7632200 -6.1080000 0.9983100		
0	9 6977600 1 5270000 -0 9983200		
Н	3.5264600 6.1080000 1.8491300		
Н	-4.4080700 4.5810000 1.8491300		
Н	-4.4080700 1.5270000 1.8491300		
Н	3.5264600 3.0540000 1.8491300		
Н	3.5264600 -3.0540000 1.8491300		
Η	3.5264600 -6.1080000 1.8491300		
Н	3.5264600 0.0000000 1.8491300		
H	-7.0529100 3.0540000 1.8491300		
H	-7.0529100 0.0000000 1.8491300		
н	6 1713000 1 5270000 1 8491300		
Н	6 1713000 -4 5810000 1 8491300		
Н	-4.4080700 -4.5810000 1.8491300		
Н	-7.0529100 -3.0540000 1.8491300		
0	-1.7632200 -9.1620000 0.9983100		
Mg	0.0000000 -6.1080000 0.0000000		
0	0.8816200 -1.5270000 0.9983100		
0	0.8816200 10.6890000 0.9983100		
0	9.6977600 4.5810000 -0.9983200		
0	0.8816200 1.5270000 0.9983100		
0	0.8816200 7 6350000 0.9963100		
Н	-1.7632200 -3.0540000 1.8491300		
0	0.8816200 -10.6890000 0.9983100		
Mg	-2.6448400 7.6350000 0.0000000		
Mg	0.0000000 9.1620000 0.0000000		
Н	-1.7605127 -10.6890000 -0.5006957	Z	0.333333333
Η	-0.4421603 -11.4501525 -0.5006948	Z	0.333333333
H	-0.8816100 -10.6890000 -2.0083200		
H	3.08/0093 9.9231543 0.5006885	Z	0.3333333333
п	4 4053649 9 1620000 0 5006894	7	0 333333333
Н	4.8475237 -8.3961509 -0.5006958	Z	0.3333333333
Н	4.4080700 -7.6350000 -2.0083200	-	
Н	-3.5264500 -9.1620000 -2.0083200		
Н	-4.4053527 -9.1620000 -0.5006957	Z	0.333333333
Н	-3.0870003 -9.9231525 -0.5006948	Z	0.333333333
Н	-10.1372007 2.2881543 0.5006885	Z	0.333333333
H	-9.6977500 1.5270000 2.0083100	_	^ >>>>>>>>>
п	-10.1372007 0.7636457 0.3006885	2 7	0.333333333
Н	-4 4080700 -7 6350000 2 0083100	2	0.333333333
H	-9.6950327 -3.0540000 -0.5006957	Z	0.333333333
Н	-8.8161300 -3.0540000 -2.0083200		
Η	9.6977600 1.5270000 -2.0083200		
Н	10.1372097 2.2881525 -0.5006948	Z	0.333333333
Η	10.1372097 0.7658475 -0.5006948	Z	0.333333333
H	10.1372097 -3.8198475 -0.5006948	Z	0.333333333
H	10.1372097 -5.3421525 -0.5006948	Z	0.333333333
н u	2 2026837 _0 0221500 _0 5006050	-	0 333333333
н	1.7632300 - 9.1620000 - 2.0083200	7	0.0000000000000000000000000000000000000
Н	-2.2026748 9.9231527 0.5006896	7.	0.333333333
Н	-1.7632200 9.1620000 2.0083100	-	
Н	-5.7318403 -8.3961525 -0.5006948	Z	0.333333333
Н	-7.0501927 -7.6350000 -0.5006957	Z	0.333333333
Н	-6.1712900 -7.6350000 -2.0083200		
Η	-6.1712900 7.6350000 -2.0083200		0 000000000
		7	11 ++++++++++++++++++++++++++++++++++++

Н	-7.0501927	7.6350000 -	-0.5006957	Z	0.333333333
H	7.0502049	7.6350000	0.5006894	Ζ	0.3333333333
H	5.7318493	8.3961543	0.5006885	z	0.333333333
Η	-10.1372007	-2.2881543	0.5006885	Z	0.333333333
H H	-9.6977500 -	-1.5270000	2.0083100	7	0 3333333333
Н	7.0529100	6.1080000 -	-2.0083200	2	0.00000000000
H	7.4923637	6.8691509 -	-0.5006958	Ζ	0.333333333
н Н	4.4080700	7.6350000 - 8.3961509 -	-2.0083200	7.	0.3333333333
Н	-3.0870003	9.9231525 -	-0.5006948	z	0.333333333
H	-4.4053527	9.1620000 -	-0.5006957	Z	0.3333333333
н Н	-3.5264500	9.1620000 - 8.3961543	0.5006885	z	0.3333333333
Н	-4.4080700	7.6350000	2.0083100		
H	-9.6950327	6.1080000 -	-0.5006957	Z	0.3333333333
п Н	-8.3766803	6.8691525 -	-0.5006948	z	0.3333333333
Н	3.0870093 -	9.9231543	0.5006885	Ζ	0.333333333
H H	4.4053649 -	-9.1620000	0.5006894	Z	0.3333333333
H	10.1372097 -	-2.2881525 -	-0.5006948	z	0.333333333
H	10.1372097 -	-0.7658475 -	-0.5006948	Ζ	0.333333333
H H	9.6977600 -	-1.5270000 -	-2.0083200 -0.5006957	7.	0.3333333333
H	-8.8161300	3.0540000 -	-2.0083200	2	0.00000000000
H	-8.8161300 -	-6.1080000 -	-2.0083200		0 22222222
н Н	-9.6950327 -	-6.8691525 -	-0.5006957	Z Z	0.3333333333
Н	10.1372097	5.3421525 -	-0.5006948	z	0.333333333
H	10.1372097	3.8198475 -	-0.5006948	Z	0.3333333333
н Н	-7.0529100 -	4.5810000 - -6.1080000	2.0083200		
Н	-7.4923607 -	-6.8691543	0.5006885	Z	0.333333333
H	-7.0529100	6.1080000	2.0083100	_	0 222222222
п Н	7.0529100 -	-6.1080000 -	-2.0083200	Z	0.333333333
Н	7.4923637 -	-6.8691509 -	-0.5006958	Z	0.333333333
Н н	-0.8816100 1	0.6890000 -	-2.0083200	7	0 3333333333
H	-1.7605127 1	.0.6890000 -	-0.5006957	z	0.3333333333
H	-1.7632200 -	9.1620000	2.0083100		
H H	-2.2026748 -	-9.9231527	0.5006896	Z Z	0.3333333333
Н	-10.1372007	5.3421543	0.5006885	z	0.333333333
H	-9.6977500	4.5810000	2.0083100		
H H	-9.69//500 -	-5.3421543	0.5006885	7.	0.3333333333
Н	-10.1372007	-3.8198457	0.5006885	z	0.333333333
H	1.7632300	9.1620000 -	-2.0083200	_	0 222222222
н Н	0.4421652 1	9.9231509 - 1.4501527	0.5006958	z z	0.3333333333
Н	1.7605249 1	0.6890000	0.5006894	Z	0.333333333
H u	0.8816200 1	.0.6890000	2.0083100	7	0 333333333
H	8.3766893	6.8691543	0.5006885	z	0.3333333333
Η	8.8161400	6.1080000	2.0083100		
Н н	9.6950449 -	-6.1080000	0.5006894	Z	0.3333333333
H	8.3766893 -	-6.8691543	0.5006885	z	0.333333333
H	8.8161400	0.0000000	2.0083100		0 00000000
н Н	9.6950449	-3.0540000	0.5006894	Z Z	0.3333333333
Н	8.8161400 -	-3.0540000	2.0083100	_	
H	8.8161400	3.0540000	2.0083100	_	0 222222222
п Н	1.7605249 -	-10.6890000	0.5006894	∠ Z	0.333333333
Н	0.8816200 -	10.6890000	2.0083100		
Н Н	0.4421652 -	-11.4501527	0.5006896	Z	0.3333333333
H	-9.6950327	0.0000000 -	-0.5006957	z	0.333333333
H	5.7318493 -	-8.3961543	0.5006885	Z	0.333333333
H H	6.1713000 - 7.0502049 -	-7.6350000	2.0083100	7	0.333333333
				-	

Figure S3. The calculated electronic spin densities for the (a) small, (b) medium and (c) large cluster models for the single paramagnetic Ni^{2+} site in the LDH layer (see Figure S2). Positive and negative equisurfaces (at ±0.0003 a.u.) are shown in red and blue, respectively.

Table S7. Atomic positions (Å) of the cluster model used for the calculation of the local hyperfine contributions, σ_{con} , to the ¹³C shielding tensor. In the calculations, only one of the eight Ni positions was occupied by a paramagnetic Ni²⁺ atom at a time, whereas the remaining seven positions were diamagnetic Mg²⁺. The entries "z 0.33333" occurring after the coordinates of the pseudohydrogen centres indicate modified nuclear charge.

174				
Atom	Х	У	Z	charge
Ni	0.075792	-6.164210	8.435539	
Ni	-0.811502	-4.651290	0.950987	
Ni	1.852086	-6.181589	1.020285	
Ni	-2.587796	-4.633911	8.366241	
Ni	2.715628	-4.678594	8.468352	
Ni	0.088917	-9.187500	8.386310	
Ni	-3.452039	-6.177163	0.948090	
Ni	-0.808611	-1.612690	0.998895	
Н	-2.547331	-4.620428	-1.059361	
Н	-2.481067	-1.553484	-1.046386	
Н	-2.437799	-7.762943	-1.031962	
Н	-5.281909	-6.408986	-1.019302	
Н	2.865938	-7.520242	-1.012824	
Н	0.070805	-6.293850	-1.008144	
Н	0.062957	-0.016096	-1.007907	
Н	0.040797	-9.122474	-0.997548	
Н	0.208343	-3.046247	-0.991896	
Н	2.603717	-4.559161	-0.971861	
Н	2.765674	-1.752441	-0.970232	
0	-5.101841	-3.108889	-0.081988	
0	-2.631533	-4.549932	-0.076265	
0	-2.631487	-1.682249	-0.055985	
0	0.031818	-6.277360	-0.024556	
0	-2.426613	-7.707830	-0.023529	
0	-5.298606	-6.263040	-0.020042	
0	2.859434	-7.691893	-0.017538	
0	0.203607	-3.126146	-0.007782	
0	0.000000	0.000000	0.00000	
0	0.015261	-9.109732	0.012049	
0	2.682336	-4.548951	0.035023	
0	2.680609	-1.726591	0.035848	
H	-3.032844	-0.901683	0.443745	z 0.333333
Н	-5.584756	-2.399271	0.450305	z 0.333333
Н	-5.584756	-3.818507	0.450305	z 0.333333
Н	-2.924172	-8.437792	0.466054	z 0.333333
Н	2.372624	-8.432709	0.466515	z 0.333333
Н	0.911004	-9.155802	0.476399	z 0.333333
Н	-5.690240	-5.487395	0.494834	z 0.333333
Н	-0.374671	-9.900640	0.504511	z 0.333333
Н	2.263405	-0.935291	0.504767	z 0.333333
Н	3.722144	-7.706480	0.507456	z 0.333333
Н	-5.719627	-7.014064	0.507978	z 0.333333
Н	-0.432393	0.747999	0.523101	z 0.333333
Н	0.432393	0.747999	0.523101	z 0.333333
Н	3.560391	-4.620290	0.529018	z 0.333333
Н	3.558714	-1.686211	0.533241	z 0.333333
Al	-3.447112	-3.147285	0.923277	
Al	-0.800033	-7.675038	0.980140	
Al	1.830932	-3.139355	1.016980	
Н	-5.307603	-7.685448	1.449660	z 0.333333
Н	-1.218780	0.751846	1.462447	z 0.333333
Н	-3.884307	-0.917074	1.475498	z 0.333333
Н	4.110449	-7.050716	1.480642	z 0.333333
Н	-3.955565	-8.431122	1.486201	z 0.333333
Н	-2.541584	-0.027414	1.492380	z 0.333333
Н	1.333690	-8.425871	1.498254	z 0.333333
Н	-5.185800	-1.665611	1.499839	z 0.333333
Н	-5.173197	-4.600243	1.507373	z 0.333333
Н	1.403810	-0.932084	1.519057	z 0.333333

Н	-2.492481	-9.153255	1.523568	z 0.333333
н	-1.217862	-9.901136	1.543855	z 0.333333
н	4 076368	-5 522192	1 547337	7 0 333333
и П	3 066127	-2 /22110	1 567960	Z 0.333333
п	3.900127	-2.423110	1.50/000	2 0.333333
н	3.969400	-3.902727	1.5/21/1	Z U.333333
0	-4.278211	-1.723235	1.939227	
0	-1.836032	-3.134195	1.948102	
0	-4.268915	-4.544465	1.953761	
0	-1.636231	-6.272952	1.963538	
0	-4 441768	-7 689528	1 969672	
0	1 (57(0)	0.0000000	1.000002	
0	-1.65/696	0.003852	1.980093	
0	0.836812	-7.697637	1.991091	
0	1.001660	-4.554737	1.997271	
0	1.007467	-1.720681	2.010104	
0	-1.615212	-9.104991	2.021733	
0	3 676117	-6 317984	2 023376	
0	3 / 81 853	-3 162576	2 056500	
	4 120722	1 02370	2.030300	
Н	-4.139/33	-1.60/626	2.932986	
Н	-1.838660	-3.068973	2.933391	
Н	-1.608827	-6.262638	2.949511	
Н	0.932031	-4.537195	2.976863	
н	-4.435111	-7.722651	2.979107	
ц	-1 576941	-0 013014	2 096605	
п	-1.370041	-0.013914	2.900095	
н	0.825162	-7.540356	2.988/01	
H	1.077223	-1.720920	3.017692	
Н	3.669274	-6.451752	3.024455	
Н	-1.635174	-9.027981	3.028595	
н	3 463951	-3 354261	3 047982	
0	-1 288443	-6 029390	1 672293	
0	1.200445	0.02000	4.072200	
0	0.//0226	-6.944929	4.691196	
С	-0.006173	-5.927192	4.698588	
0	0.541118	-4.710593	4.726237	
Н	1.073425	-10.680886	6.357385	
Н	-4.214092	-7.745564	6.383292	
н	3 542747	-6 429614	6 403639	
11	1 705490	6 276471	6 407110	
п	-1.703409	-0.2/04/1	0.407110	
н	-1./3549/	-9.105095	6.41//06	
H	1.089465	-7.507591	6.429842	
Н	0.989380	-1.735062	6.445022	
Н	0.829478	-4.541516	6.469717	
0	-4.407827	-4.532553	7.338989	
0	3 722815	-3 129517	7 340954	
0	0 022005	10 000651	7 2/7705	
0	0.923003	-10.009031	7.347703	
0	-1./444/6	-6.259981	7.390698	
0	-4.202906	-7.690451	7.391726	
0	1.083140	-7.674514	7.397716	
0	3.526050	-6.283669	7.402899	
0	3 554492	-9 127402	7 403770	
0	-1 572696	-3 109767	7 103/70	
0	-1.372000	-3.100/0/	7.407472	
0	-1./61033	-9.092353	1.42/303	
0	0.906042	-4.531573	7.450277	
0	0.904315	-1.709212	7.451102	
Н	-4.804234	-5.318710	7.833881	z 0.333333
Н	1.796707	-10.776312	7.853388	z 0.333333
н	0.498766	-11.571675	7.857139	7. 0.333333
н	-4 700136	-6 948231	7 862864	7 0 333333
11	4.700130	2 140542	7.002004	- 0 222222
н	4.383840	-3.149542	7.865250	z 0.333333
Н	-4.8400/6	-3./89164	1.868/3/	z U.333333
Н	4.419807	-6.242103	7.871485	z 0.333333
Н	3.239901	-2.419899	7.873247	z 0.333333
Н	-4.700465	-8.420413	7.881308	z 0.333333
н	4 438887	-9 175458	7 889195	7 0 333333
н	3 159//0	-9 017071	7 202010	- 0 333333 - 0.0000000
11	0.00440	J.J.I.Z.I.I D. D.T.40.40	7 000171	- 0 222222
н	-2.0640/5	-2.3/4049	1.8901/1	z U.333333
H	-2.150964	-9.883261	7.919765	z 0.333333
Н	0.487111	-0.917912	7.920021	z 0.333333
Н	1.782420	-1.668832	7.948496	z 0.333333
Al	-2.576327	-7.657659	8.395395	
A 1	2.730730	-7.702371	8.400343	
Δ1	0 054639	-3 121076	8 4300310	
 TT	0.000005	11 602000	0 010170	- 0 222222
л 	-0.290295	-11.593288	0.0131/3	∠ U.333333
Н	-1.15/142	-11.593288	8.813173	z U.333333
H	-4.464502	-3.123740	8.821278	z 0.333333
Н	4.987870	-3.830414	8.834843	z 0.333333
Н	-4.293114	-6.209120	8.886344	z 0.333333
Н	4,951577	-5.356253	8.889382	7 0.333333
н	-3 110242	-2 272202	8 800101	- 0 333333 - 0.0000000
* 1	0.110272	2.010202	0.000404	- 0.000000

Н	2.310505	-9.911195	8.905784	Z	0.333333
Н	4.869092	-8.451750	8.909142	Ζ	0.333333
Н	4.869092	-6.968562	8.909142	Ζ	0.333333
Н	-0.372484	-0.914705	8.934311	Ζ	0.333333
Н	-1.650068	-1.650901	8.934675	Ζ	0.333333
Н	-4.268775	-9.135876	8.938822	Ζ	0.333333
Н	-2.994156	-9.883757	8.959109	Ζ	0.333333
Н	2.189833	-2.405731	8.983114	Ζ	0.333333
0	-0.723718	-10.850637	9.342997		
0	-3.612326	-3.116816	9.363356		
0	4.555741	-4.565093	9.376702		
0	-3.412525	-6.255573	9.378792		
0	1.896796	-9.123550	9.383863		
0	4.382888	-7.710156	9.392613		
0	-0.939482	-7.680258	9.406345		
0	-0.774633	-4.537358	9.412525		
0	-0.768827	-1.703303	9.425358		
0	-3.391505	-9.087612	9.436987		
0	1.899823	-6.300606	9.438630		
0	1.705559	-3.145197	9.471754		
Н	-0.585241	-10.735028	10.336757		
Η	-3.615013	-3.050105	10.371147		
Н	-0.950820	-7.527186	10.377257		
Η	4.659333	-4.647291	10.378007		
Н	-3.384465	-6.245013	10.388347		
Н	1.977651	-9.141316	10.390465		
Н	4.389545	-7.743279	10.402048		
Н	-0.844263	-4.519817	10.392117		
Н	-0.699071	-1.703541	10.432946		
Н	1.893148	-6.431108	10.415275		
Н	-3.411467	-9.010603	10.443849		
Н	1.687657	-3.336882	10.463237		
Н	-1.572686	-3.108767	6.397472		
Н	-4.268915	-4.544465	2.963761		
Н	3.554492	-9.127402	6.393770		
Н	3.722815	-3.129517	6.330953		
Н	-4.407827	-4.532553	6.328989		
Н	-5.101841	-3.108889	-1.091988		

Figure S4. Experimental and simulated ¹³C MAS NMR spectra of the Mg_{2-x}Ni_xAl-LDH samples with x = 0 (Mg), 0.16 (A), 0.34 (B), 0.68 (D), 0.84 (E), and 2 (Ni), the parameters given in Table 2 were used for the simulations. Notice that different scales (ppm) are used in the left and right columns. For A and B, a second site that accounts for 35% of the total intensity, was needed.

Sample	$\delta_{iso}(^{13}C) (ppm)$	Δ (ppm)	η
$Na_2CO_3(s)$	170.4(3)	-51(1)	0.30(5)
NaHCO ₃ (s)	164.3(4)	62(2)	0.40(10)
Mg ₂ Al-LDH	170.3(3)	-53(3)	0.25(10)
A^b	169.7	97	0.56
	166.0	116	0.67
\mathbf{B}^{b}	169.2	114	0.57
	166.2	116	0.67
D	167.3	174	0.91
E	166.4	250	0.70
Ni ₂ Al-LDH	157.1	480	0.56

Table S8. ¹³C MAS NMR parameters reported in the Haeberlen convention.^{*a*}

^aThe Haeberlen convention entails for the isotropic value $\delta_{iso} = \frac{1}{3} (\delta_{xx} + \delta_{yy} + \delta_{zz})$, with the principal values arranged adhering to $|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}|$, the reduced anisotropy $\Delta = \delta_{zz} - \delta_{iso}$, and the asymmetry parameter $\eta = (\delta_{yy} - \delta_{xx})/\Delta$, where $0 \le \eta \le 1$. ^bThe site at 169 ppm has approximately twice the intensity of the 166 ppm site.

Table S9. Calculated orbital shielding tensors, eigenvalues and the corresponding eigenvectors, as well as isotropic shielding constants (σ), shielding anisotropy ($\Delta \sigma$), and asymmetry parameter η , for local environments of the interlayer CO₃²⁻ in the optimised unit cells of the Mg₂Al-LDH material. The LDH layer normal is in the *z* coordinate direction.

				Eigenvectors						
Site	Shieldi	ng tensor	(ppm)	Eigenvalues (ppm)	x	У	Z	σ (ppm)	$\Delta \sigma (\text{ppm})^a$	η^b
1M/C1	-19.01	-6.41	0.23	48.26	0.01	-0.02	1.00	-1.98	75.36	0.47
	-9.97	-35.17	-1.62	-15.73	-0.89	0.46	0.02			
	0.57	-1.04	48.23	-38.46	-0.31	-0.95	-0.01			
1M/C2	-4.95	-14.42	-1.11	46.54	-0.02	-0.01	1.00	1.96	66.86	1.02
	-22.52	-35.65	-1.57	3.37	-0.87	0.50	-0.01			
	-1.84	-1.91	46.48	-44.02	-0.35	-0.94	-0.03			
2T/C1	-33.07	-6.04	0.00	50.83	0.00	0.00	1.00	-2.63	80.20	0.32
	-8.59	-25.65	-0.01	-21.26	0.46	-0.89	0.00			
	0.00	-0.01	50.83	-37.47	0.81	0.59	0.00			
2T/C2	-9.68	7.06	-0.02	50.22	0.00	0.00	1.00	0.12	75.15	0.65
	5.20	-40.18	0.01	-8.52	-0.99	-0.16	0.00			
	-0.02	0.01	50.22	-41.34	-0.22	0.98	0.00			
2T/C3	-33.74	11.79	-0.01	51.35	0.00	0.00	1.00	-1.91	79.89	0.26
	1.42	-23.33	0.00	-21.91	-0.71	-0.71	0.00			
	-0.01	0.00	51.35	-35.15	0.99	-0.12	0.00			
2T/C4	-38.97	-0.89	-0.03	49.88	0.00	0.00	1.00	-2.04	77.89	0.44
	1.58	-17.04	0.00	-17.10	-0.04	1.00	0.00			
	-0.03	0.00	49.88	-38.91	-1.00	0.07	0.00			

^{*a*} Defined from the shielding eigenvalues as $\Delta \sigma = \sigma_{33} - (\sigma_{11} + \sigma_{22})/2$, where σ_{33} is in the present case the most shielded eigenvalue in the direction of the LDH layer normal. The eigenvalues σ_{11} and σ_{22} are located in the plane parallel to the LDH layers. ^{*b*} Defined from the shielding eigenvalues as $\eta = \frac{\sigma_{22} - \sigma_{11}}{\sigma_{33}}$.

Ni ²⁺ site number		$\sigma_{\rm hf}$			$\sigma_{pc}^{(1)}$			σ _{con}	
1	129.6	-0.5	-7.6	126.6	0.5	-8.2	3.1	-1.0	0.7
	-0.4	129.2	21.4	0.5	125.2	23.8	-1.0	3.9	-2.4
	-8.1	21.9	-207.5	-8.7	25.1	-262.1	0.6	-3.2	54.6
2	89.2	13.7	-51.1	89.0	19.1	-55.7	0.3	-5.4	4.5
	13.8	76.1	81.0	19.1	70.8	88.2	-5.3	5.3	-7.2
	-52.8	-52.8	-138.2	-58.7	93.0	-166.2	5.9	-145.8	28.1
3	44.0	6.8	104.4	37.1	7.9	113.0	6.9	-1.1	-8.7
	6.7	89.4	-15.5	7.9	93.5	-15.5	-1.2	-4.2	-0.1
	107.6	-15.8	-113.1	119.2	-16.3	-136.0	-11.6	0.5	22.9
4	9.1	26.3	81.2	5.4	30.1	84.8	3.7	-3.8	-3.6
	26.6	51.2	-38.5	30.1	50.4	-42.5	-3.5	0.8	4.0
	83.5	-39.3	-51.1	89.4	-44.8	-58.1	-5.9	5.5	6.9
5	9.1	-25.1	-74.5	2.5	-26.2	-78.7	6.7	1.2	4.2
	-24.9	48.3	-36.1	-26.2	47.6	-36.1	1.3	0.6	0.0
	-76.3	-37.2	-45.8	-83.0	-38.1	-52.1	6.7	0.9	6.3
6	55.5	3.3	-3.2	55.7	2.1	-2.4	-0.2	1.2	-0.8
	3.6	-11.8	78.1	2.1	-17.6	82.5	1.4	5.8	-4.4
	-3.5	80.2	-34.4	-2.5	87.0	-39.7	-0.9	-6.8	5.3
7	-15.1	-5.3	-73.4	-18.6	-5.0	-74.4	3.4	-0.3	0.9
	-5.3	50.4	-6.5	-5.0	49.9	-5.4	-0.3	0.5	-1.1
	-75.2	-6.7	-34.4	-78.4	-5.7	-32.6	3.2	-1.0	-1.8
8	31.1	10.5	-9.3	33.1	11.1	-9.5	-2.1	-0.6	0.2
	10.7	-22.2	48.5	11.1	-24.5	50.8	-0.4	2.3	-2.3
	-9.7	49.9	-7.9	-10.0	53.6	-9.0	0.3	-3.7	1.2
Sum of 18	352.6	29.7	-33.6	330.8	39.6	-31.0	21.8	-9.9	-2.6
	30.5	410.5	132.4	39.6	395.3	145.9	-9.0	15.2	-13.5
	-34.5	0.2	-632.4	-32.7	153.8	-755.7	-1.8	-153.7	123.4

Table S10. Calculated hyperfine contributions to the paramagnetic ¹³C NMR shielding tensor σ (in ppm) from the different Ni²⁺ sites using the cluster model depicted in Figure 4.

Anisotropic shift results from individual carbon sites using method 2

Method 2 described below is a variation of method 1: The shielding tensors are first diagonalised to obtain the eigenvalues, which are subsequently averaged over the different impurity distributions. In contrast to method 1, the results are reported individually for the various carbon sites (1M/C1-2 and 2T/C1-4), in method 2. Figure S5 and Table S11 present the obtained average eigenvalue data. A linear relation is observed between the eigenvalues of the shift tensor and x (Ni²⁺ content). Across the different sites and stacking models (1M or 2T) for both the X-ray and optimised geometries, each of the computed eigenvalues show significant variation for a fixed Ni^{2+} content, x. For example, this range is close to 250 ppm for the top eigenvalue δ_{11} (in the perpendicular direction with respect to the LDH layers) for the Ni end member (x = 1) and close to 150 ppm for the two in-plane eigenvalues $(\delta_{22} \text{ and } \delta_{33})$. For the eigenvalue δ_{11} , which is in the direction of the layer normal, the differences among the individual carbon sites (C1 and C2 for 1M, C1-4 for 2T) is reduced when the geometryoptimised 1M and 2T structures are used instead of their X-ray counterparts. Some of the sites, such as that of the 2T/C3 site, change very dramatically upon relaxing the geometry, although the average over the different sites, in method 1 above, only changes a bit. Most likely the geometry optimisation is a necessary step in the present kind of modelling of the interlayer space, due to the poorly defined hydrogen positions of the X-ray structures and highly disordered interlayer, as also noted in the reported X-ray structures.^{7,8}

Figure S5. The experimental and computed total ¹³C chemical shift tensor eigenvalues (δ_{11} , δ_{22} , and δ_{33} , in ppm) for CO₃²⁻ in Mg_{2-x}Ni_xAl-LDH as functions of *x*. The sum of the orbital, pseudocontact and local hyperfine contributions obtained from method 2 described in the preceding chapter of this ESI document: total shielding tensors diagonalised individually for the different carbon sites of the 1M (sites C1 and C2) and 2T (sites C1-C4) models and the obtained eigenvalues then averaged over the Ni²⁺ distributions. The results are shown separately for the experimental X-ray and computationally optimised structures. (a) Largest, (b) middle, and (c) lowest eigenvalue, which correspond to δ_{11} , δ_{22} and δ_{33} , respectively.

Table S11. Calculated ¹³C NMR chemical shift data (ppm), $\delta(^{13}C)$, for CO₃²⁻ in Mg_{2-x}Ni_xAl-LDH as a function of *x*. The data includes the contributions from the orbital, pseudocontact and local hyperfine interactions and the calculations have been carried out using method 2 described in the text.

Structure	Eigenvalue	x = 0	x = 0.36	<i>x</i> = 0.68	<i>x</i> = 1.36	<i>x</i> = 1.68	<i>x</i> = 2
1M/C1 X-ray	δ_{11}	131	240	331	529	625	716
	δ_{22}	218	153	103	-8	-64	-115
	δ_{33}	195	125	64	-69	-130	-191
1M/C2 X-ray	δ_{11}	132	219	288	445	517	591
	δ_{22}	223	168	127	30	-12	-57
	δ33	175	119	69	-38	-91	-140
2T/C1 X-ray	δ_{11}	128	240	342	554	654	754
	δ_{22}	217	150	90	-36	-94	-154
	δ_{33}	200	131	69	-63	-126	-186
2T/C3 X-ray	δ_{11}	128	240	341	554	653	753
	δ_{22}	216	147	84	-45	-106	-166
	δ ₃₃	199	132	73	-56	-115	-176
2T/C2 X-ray	δ_{11}	129	228	314	493	579	665
	δ22	220	161	113	15	-31	-77
	δ ₃₃	187	123	64	-63	-125	-186
2T/C4 X-ray	δ_{11}	129	200	259	387	445	506
	δ_{22}	218	172	130	44	6	-36
	δ_{33}	196	146	106	16	-27	-68
1M/C1							
optimised	δ_{11}	131	221	292	457	536	612
	δ_{22}	218	153	106	2	-46	-91
	δ33	195	143	98	-9	-63	-115
1M/C2							
optimised	δ_{11}	132	228	316	499	579	667
	δ_{22}	223	168	121	23	-21	-67
	δ_{33}	175	111	48	-83	-141	-204
2T/C1 optimised	δ_{11}	128	222	306	482	565	648
	δ_{22}	217	160	110	10	-39	-86
	δ_{33}	200	138	83	-39	-95	-152
2T/C3 optimised	δ_{11}	128	198	256	381	439	499
	δ_{22}	216	167	127	39	-1	-41
	δ ₃₃	199	152	111	26	-15	-57
2T/C2 optimised	δ_{11}	129	224	312	495	575	663
-	δ22	220	156	103	4	-40	-86
	δ33	187	133	76	-54	-112	-175
2T/C4 optimised	δ_{11}	129	222	302	479	558	640
*	δ_{22}	218	156	94	-28	-85	-143
	δ ₃₃	196	141	101	1	-44	-90

Anisotropic shift results from diagonalised average tensors (method 3)

In method 3, the full ¹³C shift tensors are averaged over the various impurity distributions before diagonalisation of the average tensors, at each value of *x*. Figure S6 shows such eigenvalues averaged over the two (for the 1M structure) and four (2T) carbon sites. The corresponding numerical data are presented in Table S12. The general findings are similar to those obtained from method 1 in the main text: there is a linear dependence of the shift eigenvalues on *x*. The largest (perpendicular to the LDH planes) eigenvalue, δ_{11} , is reproduced in a very good agreement with the experiment, when the local hyperfine correction δ_{con} is taken into account. Also, the furthest in-plane eigenvalue, δ_{33} , agrees in an overall satisfactory way with the SSNMR data, Finally, δ_{22} remains relative poorly reproduced by the computations. No large qualitative difference between the X-ray and optimised structures can be found. In the light of the findings of method 2, this follows from averaging over the sites. A distinct feature of method 3 as compared to both methods 1 and 2 is that averaging the tensors before diagonalisation tends to render the asymmetry, *i.e.*, difference between the in-plane eigenvalues δ_{22} and δ_{33} , small. Experimentally the two are clearly distinct.

Figure S6. The experimental and computed total ¹³C chemical shift tensor eigenvalues (δ_{11} , δ_{22} , and δ_{33} , in ppm) for CO₃²⁻ in Mg_{2-x}Ni_xAl-LDH as functions of *x*. The computational results are shown both for the sum of the orbital and pseudocontact contributions (dashed lines and open symbols) and added with local hyperfine contribution δ_{con} (full lines and symbols). Computations following method 3 are described in the text: The total shielding tensors for the different carbon sites of the 1M (sites C1 and C2) and 2T (sites C1-C4) models were first averaged and then the average tensors were diagonalised. The results are shown separately for experimental X-ray and computationally optimised structures of (a) 1M and (b) 2T type.

Table S12. The eigenvalues of averaged computational chemical shift tensors (in ppm) following method 3 described in the text for $Mg_{2-x}Ni_xAl-LDH$ as functions of *x*. Data include the orbital, pseudocontact and local hyperfine contributions.

Structure	Eigenvalue	x = 0	<i>x</i> = 0.36	<i>x</i> = 0.68	<i>x</i> = 1.36	<i>x</i> = 1.68	<i>x</i> = 2
1M X-ray	δ_{11}	132	229	309	486	570	652
	δ_{22}	220	160	113	7	-43	-93
	δ ₃₃	185	123	68	-48	-104	-158
1M optimised	δ_{11}	132	225	304	478	557	639
	δ_{22}	220	160	113	8	-40	-88
	δ ₃₃	185	127	74	-41	-94	-150
2T X-ray	δ_{11}	128	227	314	497	583	669
	δ_{22}	209	147	96	-13	-62	-114
	δ ₃₃	205	143	86	-34	-92	-148
2T optimised	δ_{11}	128	216	294	459	534	612
	δ ₂₂	209	154	105	3	-43	-92
	δ ₃₃	205	147	97	-14	-64	-116

References

- TURBOMOLE V6.2 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
- 2. Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J Chem Phys.* 1999;110(13):6158-6170. doi:10.1063/1.478522
- Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J Chem Phys.* 2010;132(15). doi:10.1063/1.3382344
- Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. *J Comput Chem.* 2011;32(7):1456-1465. doi:https://doi.org/10.1002/jcc.21759
- 5. Dolg M, Wedig U, Stoll H, Preuss H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. *J Chem Phys.* 1987;86(2):866-872. doi:10.1063/1.452288
- 6. Weigend F, Haser M, Patzelt H, Ahlrichs R. RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. *Chem Phys Lett.* 1998;294:143-152.
- Krivovichev S V, Yakovenchuk VN, Zhitova ES, Zolotarev AA, Pakhomovsky YA, Ivanyuk GY. Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M: first evidence of a monoclinic polytype in M²⁺-M³⁺ layered double hydroxides. *Mineral Mag.* 2010;74(5):833-840. doi:DOI: 10.1180/minmag.2010.074.5.833
- Zhitova ES, Krivovichev S V, Yakovenchuk VN, Ivanyuk GY, Pakhomovsky YA, Mikhailova JA. Crystal chemistry of natural layered double hydroxides: 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkalineultrabasic massif, Kola peninsula, Russia. *Mineral Mag.* 2018;82(2):329-346. doi:DOI: 10.1180/minmag.2017.081.046