Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Computational Analysis of Vibrational Spectra and Structure

of Aqueous Cytosine

Sergey A. Katsyuba,* Timur I. Burganov

Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Centre of RAS, Arbuzov st. 8, 420088 Kazan, Russia.

Supporting information

Contents:

Figure S1. IR spectra of cytosine- d_3 simulated with the use of three different DFT methods	S 3
Table S1. Frequencies and IR intensities of the strongest bands in the spectra of cytosine	S4
Table S2. Frequencies and IR intensities of the strongest bands in the spectra of cytosine-d ₃	S4
Figure S2. IR spectra of cytosine-d ₃ , explicitly solvated with D ₂ O molecules, simulated with the method	use of B97-3c S5
Figure S3. IR spectra of cytosine and cytosine-d ₃ , explicitly solvated with H ₂ O and D ₂ O molecul respectively, simulated with the use of PBE/def2-TZVP method	les, S6
Figure S2a. IR spectra of cytosine- d_3 , explicitly solvated with heavy water molecules ($m_H = m_O$ main text), simulated with the use of B97-3c method.	= 400 aem, see S7
Figure S3a. IR spectra of cytosine and cytosine- d_3 , explicitly solvated with heavy water molecule $m_0 = 400$ aem, see main text), simulated with the use of PBE/def2-TZVP method.	es ($m_H = m_D =$ S8
Figure S4. IR spectra of cytosine, explicitly solvated with heavy water molecules ($m_H = m_O = 40$ main text), simulated with the use of B97-3c method.	0 aem, see S9
Figure S5. B3LYP/def2-TZVP calculated IR spectra of various clusters cytosine:30H2O	S10
Figure S6. B3LYP/def2-TZVP calculated IR spectra of various clusters cytosine-d ₃ :30D ₂ O	S11
Figure S7. Raman spectra of cytosine- d_3 , explicitly solvated with heavy water molecules ($m_D = 1$ see main text), simulated with the use of PBE/def2-TZVP method	$m_0 = 400$ aem, S12
Figure S8. Raman spectra of cytosine- d_3 , explicitly solvated with heavy water molecules ($m_D = 1$ see main text), simulated with the use of B3LYP/def2-TZVP method	$m_0 = 400$ aem, S13
Figure S9. Raman spectra of cytosine, explicitly solvated with heavy water molecules ($m_D = m_O$ main text), simulated with the use of B3LYP/def2-TZVP method S1	= 400 aem, see S14

Table S3. Non-scaled frequencies and relative Raman intensities of the strongest bands in the spectra of	
cytosine-d ₃ computed for various clusters cytosine-d ₃ -6D ₂ O	S15
Figure S10. B3LYP/def2-TZVP calculated Raman spectra of various clusters cytosine:30H ₂ O	S16
Figure S11. B3LYP/def2-TZVP calculated Raman spectra of various clusters cytosine-d ₃ :30D ₂ O	S18
Figure S12. Raman spectra of cytosine, explicitly solvated with 30 water molecules, simulated with the B3LYP-D3/def2-TZVP and B3LYP-D3/aug-cc-pVDZ	use of S20
Figure S13. IR spectra simulated for clusters cytosine-d ₃ :4D ₂ O and cytosine-d ₃ :30D ₂ O	S21

Figure S1. IR spectra of cytosine-d₃ simulated with the use of three different DFT methods.

Table S1. Frequencies (v/cm⁻¹) and relative IR intensities (I_{rel}) of the strongest bands in the spectra of cytosine (spectral region 1100-1800 cm⁻¹).

Ar		B3LYP/def2-	
matrix Ошибка!		TZVP	
Закладка не			
определ	ена.		
V	I _{rel}	ν	I _{rel}
1124	0.04	1109	0.01
1192	0.08	1195	0.07
1244	0.04	1236	0.04
1337	0.05	1337	0.07
1422	0.06	1417	0.12
1475	0.22	1481	0.21
1539	0.11	1538	0.23
1595	0.08	1604	0.22
1656	0.49	1658	0.68
1720	1	1740	1

Table S2. Frequencies (ν/cm^{-1}) and relative IR intensities (I_{rel}) of the strongest bands in the spectra of cytosined₃ (spectral region 1300-1800 cm⁻¹).

Ar		B3LYP/def2-		
matrix Ошибка!		TZVP		
Закладка не				
определена.				
v	Irel	ν	I _{rel}	
1318	0.11	1307	0.03	
1371	0.24	1366	0.21	
1492	0.28	1485	0.42	
1495	0.22	1509	0.25	
1645	0.66	1642	0.50	
1706	1	1722	1	

Figure S2. IR spectra of cytosine- d_3 , explicitly solvated with D_2O molecules, simulated with the use of B97-3c method.

Figure S3. IR spectra of cytosine and cytosine-d₃, explicitly solvated with H₂O and D₂O molecules, respectively, simulated with the use of PBE/def2-TZVP method.

Figure S2a. IR spectra of cytosine-d₃, explicitly solvated with heavy water molecules ($m_H = m_O = 400$ aem, see main text), simulated with the use of B97-3c method. Comparison with Fig. S2 shows that the bands of cytosine that do not overlap with the bands of D₂O (spectral region ~1300-1800 cm⁻¹) do not change when D₂O molecules are replaced by "heavy water".

Figure S3a. IR spectra of cytosine and cytosine-d₃, explicitly solvated with heavy water molecules ($m_H = m_D = m_O = 400$ aem, see main text), simulated with the use of PBE/def2-TZVP method. Comparison with Fig. S3 shows that the bands of cytosine that do not overlap with the bands of H₂O (spectral region ~1100-1550 cm⁻¹) or D₂O (spectral region ~1300-1800 cm⁻¹) do not change when H₂O or D₂O are replaced by "heavy water".

Figure S4. IR spectra of cytosine, explicitly solvated with heavy water molecules ($m_H = m_O = 400$ aem, see main text), simulated with the use of B97-3c method.

Figure S5. IR spectra of cytosine, explicitly solvated with 30 heavy water molecules ($m_H = m_O = 400$ aem, see main text), simulated with the use of B3LYP-D3/def2-TZVP method for the lowest-energy (LE) and the second lowest energy (LE2) clusters from the generated ensemble of four clusters. The energy difference between LE and LE2 clusters = 2.4 cal/mol, and the corresponding Boltzmann weights of the clusters = 0.438 and 0.436, respectively. LE* is the spectrum of the lowest-energy cluster generated in the different QCG run (see main text).

Figure S6. IR spectra of cytosine-d₃, explicitly solvated with 30 heavy water molecules ($m_D = m_O = 400$ aem, see main text), simulated with the use of B3LYP-D3/def2-TZVP method for the lowest-energy (LE) and the second lowest energy (LE2) clusters from the generated ensemble of four clusters. The energy difference between LE and LE2 clusters = 2.4 cal/mol, and the corresponding Boltzmann weights of the clusters = 0.438 and 0.436, respectively. LE* is the spectrum of the lowest-energy cluster generated in the different QCG run (see main text).

Figure S7. Raman spectra of cytosine- d_3 , explicitly solvated with heavy water molecules ($m_D = m_O = 400$ aem, see main text), simulated with the use of PBE/def2-TZVP method.

Figure S8. Raman spectra of cytosine- d_3 , explicitly solvated with heavy water molecules ($m_D = m_O = 400$ aem, see main text), simulated with the use of B3LYP/def2-TZVP method.

 $33H_2O$

Figure S9. Raman spectra of cytosine, explicitly solvated with heavy water molecules ($m_H = m_O = 400$ aem, see main text), simulated with the use of B3LYP/def2-TZVP method.

S14

Table S3. Non-scaled frequencies (v/cm⁻¹) and relative Raman intensities (I_{rel}) of the strongest bands in the spectra of cytosine-d₃ computed for various clusters cytosine-d₃-6D₂O with the use of PBE-D3/def2-TZVP method (spectral region 700-1800 cm⁻¹). 25 clusters were generated with relative energies (E) up to 0.6 kcal/mol.

The	lowest-	The	fourth	The h	ighest-
energy	cluster	lowest-energy		energy cluster	
		cluster ($E = 0.1$		(E =	0.6
		kcal/mol)		kcal/mol)	
ν	I _{rel}	ν	I _{rel}	ν	I _{rel}
1613	0.68	1613	0.68	1583	0.89
1522	0.27	1522	0.27	1522	0.31
1289	0.50	1289	0.50	1293	0.87
1124	0.26	1124	0.27	1132	0.21
945	0.24	945	0.24	935	0.20
770	1.00	770	1.00	772	1.00

Figure S10. Raman spectra of cytosine, explicitly solvated with 30 heavy water molecules ($m_H = m_O = 400$ aem, see main text), simulated with the use of B3LYP-D3/def2-TZVP method for the lowest-energy (LE) and the second lowest energy (LE2) clusters from the generated ensemble of four clusters. The energy difference between LE and LE2 clusters = 2.4 cal/mol, and the corresponding Boltzmann weights of the clusters = 0.438 and 0.436, respectively. LE* is the spectrum of the lowest-energy cluster generated in the different QCG run (see main text).

Figure S11. Raman spectra of cytosine-d₃, explicitly solvated with 30 heavy water molecules ($m_D = m_O = 400$ aem, see main text), simulated with the use of B3LYP-D3/def2-TZVP method for the lowest-energy (LE) and the second lowest energy (LE2) clusters from the generated ensemble of four clusters. The energy difference between LE and LE2 clusters = 2.4 cal/mol, and the corresponding Boltzmann weights of the clusters = 0.438 and 0.436, respectively. LE* is the spectrum of the lowest-energy cluster generated in the different QCG run (see main text).

Figure S12. Raman spectra of cytosine, explicitly solvated with 30 heavy water molecules ($m_H = m_O = 400$ aem, see main text), simulated with the use of B3LYP-D3/def2-TZVP and B3LYP-D3/aug-cc-pVDZ.

Figure S13. IR spectra simulated for clusters cytosine-d₃:4D₂O (top) and cytosine-d₃:30D₂O (bottom) with the use of protocols adopted in Ref. 3 and in present paper, respectively, in comparison to the experiment.