Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Electronic Supporting Information

Photophysics and Charge Transfer in Oligo(thiophene) Based Conjugated Diblock Oligomers

Habtom B. Gobeze, Pradeepkumar Jagadesan, and Kirk S Schanze*

University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio,

TX 78249.

* Corresponding author email: kirk.schanze@utsa.edu

Synthesis and Characterization

Precursors T4¹, T4-SnBu₃², TBT-Br³, T4-Br⁴, T8⁵, T8-Br⁶, TBT-SnBu₃⁷ were synthesized by following reported procedure.

Scheme S1. Synthesis of T4-TBT.

T8-TBT

Scheme S2. Synthesis of T8-TBT.

Synthesis of T4-TBT: To a solution of TBT-Br (220 mg, 0.316 mmol) and T4-SnBu₃ (274 mg, 0.348 mmol) DMF (20 mL) was added Pd(PPh₃)₄ (38 mg, 0.032 mmol). The reaction mixture was stirred at 120 °C for 12 h and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography using hexane/CH₂Cl₂ as eluent resulting in a wine red color solid (227 mg, 90%).

¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.13 (dd, 1H), 8.04 (d, 1H), 7.88 (quartet, 2H), 7.47 (dd, 1H), 7.25 (d, 1H), 7.27 – 7.13 (m, 5H), 7.08 (d, 1H), 7.04 (d, 1H), 6.95 (d, 1H), 2.78 – 2.74 (m, 8H), 1.75 – 1.60 (m, 8H), 1.40 – 1.32 (m, 24H), 0.94 – 0.90 (m, 12H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 152.63, 152.45, 140.65, 139.90, 139.38, 138.57, 138.04, 136.92, 136.65, 135.47, 134.94, 134. 88, 130.30, 130.11, 129.97, 128.25, 128.04, 127.53, 127.02, 126.84, 126.54, 126.42, 125.89, 125.77, 125.58, 125.14, 124.41, 123.92, 123.89, 31.69, 30.65, 30.47, 29.60, 29.31, 29.24, 27.86, 26.86, 22.65, 17.54, 13.63. ESI-MS (m/z) [M]⁺ Calculated for C42H40N2S7 : 796.1230 found: 796.1350.

Synthesis of T8-TBT: To a solution of T8-Br (75 mg, 0.070 mmol) and TBT-SnBu₃ (45 mg, 0.077 mmol) DMF (10 mL) was added Pd(PPh₃)₄ (8 mg, 0.007 mmol). The reaction mixture was stirred at 120 °C for 12 h and the solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography using hexane/CH₂Cl₂ as eluent resulting in a brown color solid (77 mg, 85%).

¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.08 (dd, 1H), 7.95 (d, 1H), 7.78 (quartet, 2H) 7.43 (d, 1H), 7.26 – 7.09 (m, 8H), 7.02 – 6.94 (m, 7H), 2.78 – 2.74 (m, 8H), 1.75 – 1.60 (m, 8H), 1.40 – 1.32 (m, 24H), 0.94 – 0.90 (m, 12H); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 152.57, 152.38, 140.48, 139.86, 139.38, 138.53, 137.98, 136.70, 135.41, 134.98, 134.80, 130.34, 130.11129.99, 129.55, 128.19, 128.00, 127.47, 126.94, 126.76, 126.57, 126.49, 126.25, 126.18, 125.76, 125.68, 125.49, 125.01, 124.35, 123.91, 123.85, 31.73, 31.71, 30.65, 30.42, 29.74, 29.68, 29.62, 29.37, 29.33, 29.26, 22.67, 14.17, 14.14. ESI-MS (m/z) [M]⁺ Calculated for C70H72N2S11: 1292.2612, found: 1292.2618.

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃) of T4-TBT.

Figure S2. ¹³C NMR spectrum (125 MHz, CDCl₃) of T4-TBT.

Figure S3. ¹H NMR spectrum (500 MHz, CDCl₃) of T8-TBT.

Figure S4. ¹³C NMR spectrum (125 MHz, CDCl₃) of T8-TBT.

Figure S5. Cyclic voltammograms of **T4**, **T8**, **TBT**, **T4-TBT**, and **T8-TBT** in nitrogen saturated dichloromethane with 0.1 M tetrabutyl ammonium hexafluoro phosphate as a supporting electrolyte in a three-electrode set up with glassy carbon (WE), silver/silver chloride (RE), and platinum wire (CE) and a scan rate of 100 mVs⁻¹

Figure S6. HOMO-LUMO frontier orbitals of model compounds T4, T8, and TBT.

Compound	LUMO +1	LUMO	НОМО	HOMO -1
T4	- 0.78	- 1.74	- 4.98	- 5.97
T8	- 1.69	- 2.05	- 4.75	- 5.15
TBT	- 1.08	- 2.61	- 5.35	- 6.59

Table S1. Frontier Energy Level Energies for T4, T8 and TBT^a

^a Energies listed in eV relative to vacuum level.

Figure S7. Experimentally measured UV-vis spectra (blue) in hexane and TDDFT calculated transitions (symbol and lines) for T4-TBT

Figure S8. Frontier molecular orbitals (HOMO and LUMO) of **T4-TBT**. Lines show major transitions with oscillator strength higher than 0.15.

Excited	Excitation transitions		Energy (eV)	Wavelength (nm)	Oscillator
State					strength (f)
1	209 ->210	0.69962	1.9113	648.69	0.8224
2	208 ->210	0.68703	2.3840	520.07	0.1964
3	209 ->211	0.68882	2.6301	471.41	1.2760
4	207 ->210	0.67716	2.9651	418.14	0.0110
5	208 ->211	0.53864	3.0902	401.22	0.0670
	209 ->212	-0.44195			
6	208 ->211	0.42573	3.2436	382.24	0.0299
	209 ->212	0.51751			
7	205 ->210	0.16898	3.5536	348.89	0.0186
	206 ->210	0.62436			
	208 ->212	-0.17512			
8	201 ->210	-0.20796	3.6284	341.70	0.2125
	203 ->210	0.12114			
	204 ->210	-0.35558			
	206 ->210	0.11802			
	207 ->211	0.22771			
	208 ->212	0.39323			
	209 ->213	0.26845			
9	201 ->210	0.13220	3.6360	340.99	0.0836
	203 ->210	0.21422			
	204 ->210	0.27850			
	206 ->210	0.13208			
	207 ->211	-0.11090			
	208 ->212	0.46654			
	209 ->213	-0.28403			
	209 ->214	0.10833			
10	203 ->210	0.59834	3.6576	338.97	0.0220
	204 ->210	0.18031			
	207 ->211	0.10375			
	208 ->212	-0.22041			
	209 ->213	0.19703			
11	201 ->210	0.16371	3.6752	337.36	0.0348
	203 ->210	-0.25127			
	204 ->210	0.40621			
	207 ->211	0.36223			
	208 ->212	0.10076			

Table S2. Table of transitions for **T4-TBT**. Major transitions with oscillator strength higher than**0.15** are shown in color (bold)

	209 ->213	0.28854			
12	201 ->210	0.51064	3.7975	326.49	0.0086
	204 ->210	-0.25974			
	205 ->210	-0.24937			
	206 ->210	0.15018			
	207 ->211	0.19053			
	209 ->213	-0.11304			
	209 ->214	-0.11754			
13	205 ->210	0.43407	3.8236	324.26	0.0397
	206 ->210	-0.10209			
	207 ->211	0.37663			
	209 ->213	-0.34250			
14	201 ->210	0.33427	3.8397	322.90	0.0255
	204 ->210	-0.12982			
	205 ->210	0.45071			
	207 ->211	-0.25899			
	209 ->213	0.25297			
15	202 ->210	-0.19890	3.9550	313.49	0.0060
	206 ->211	0.17124			
	207 ->211	0.15866			
	207 ->212	0.10461			
	209 ->214	0.57737			
16	200 ->210	-0.12130	4.0106	309.14	0.0032
	202 ->210	0.64941			
	209 ->214	0.18323			
17	198 ->210	-0.10263	4.1144	301.34	0.0110
	199 ->210	0.46428			
	200 ->210	0.44102			
	209 ->215	-0.15507			
18	198 ->210	0.25231	4.1560	298.32	0.0567
	207 ->212	0.10836			
	208 ->213	0.59735			
	209 ->214	-0.10643			
19	198 ->210	0.25025	4.1944	295.59	0.0145
	199 ->210	-0.26868			
	200 ->210	0.45642			
	202 ->210	0.11935			
	206 ->211	-0.12095			
	208 ->213	-0.15217			
	208 ->214	0.13704			
	209 ->215	0.21220			

Figure S9. Experimentally measured UV-vis spectra (blue) in hexane and TDDFT calculated transitions (symbol and lines) for T8-TBT

Figure S10. Frontier molecular orbitals (HOMO and LUMO) of **T8-TBT**. Lines show major transitions with oscillator strength higher than 0.15.

Excited	Excitation transitions		Energy (eV)	Wavelength (nm)	Oscillator
State				,	strength (f)
1	340 -> 342	0.69962	1.8296	677.66	0.9836
	341 -> 342	0.67518			
2	339 -> 342	0.14381	2.1110	587.34	0.5162
	340 -> 342	0.64742			
	341 -> 342	0.20012			
	341 -> 343	0.11942			
3	340 -> 342	-0.14960	2.2945	540.35	2.0912
	340 -> 344	-0.13127			
	341 -> 343	0.67189			
4	338 -> 342	0.10139	2.4371	508.73	0.0075
	339 -> 342	0.67323			
	340 -> 342	-0.13852			
5	340 -> 343	0.64878	2.6522	467.47	0.0102
	341 -> 344	0.24058			
6	340 -> 343	-0.23617	2.7111	457.33	0.0789
	340 -> 345	0.10084			
	341 -> 344	0.64157			
7	337 -> 342	-0.16022	2.8522	434.70	0.0219
	338 -> 342	0.65645			
8	339 -> 343	0.54227	2.9424	421.38	0.0951
	340 -> 344	-0.11149			
	341 -> 345	-0.41153			
9	340 -> 344	0.64026	3.0039	412.74	0.4660
	341 -> 343	0.13306			
	341 -> 345	-0.22897		100 =0	0.0.C = 0
10	337 -> 342	0.11404	3.0951	400.58	0.0670
	339 -> 343	0.42185			
	340 -> 344	0.16897			
	341 -> 345	0.48413	2.2265	204.20	0.0047
11	336 -> 342	0.14925	3.2265	384.26	0.0047
	33/ -> 342	0.60676			
	338 -> 342	0.14398			
	340 -> 343	-0.1/9/4			
12	341 -> 343	-0.12047	2 2025	276 45	0.0(2(
12	33/ -> 342 338 < 242	0.120/1 0.17440	3.2933	5/0.43	0.0020
	330 - 343 330 - 211	0.1/440			
	337 - 344 340 > 245	0.43/00			
	340 - 2343 341 - 2346	0.38200			
13	$\frac{371 - 370}{337 - 340}$	0.25571	3 3167	373.87	0.0443
15	338 -> 343	0.10244	5.5107	5+5.02	0.0773
	JJU - JTJ	0.101/0			

Table S3. Table of transitions for **T8-TBT**. Major transitions with oscillator strength higher than**0.15** are shown in color (bold)

	339 -> 344	-0.41696			
	340 -> 345	0.48181			
	341 -> 346	-0.13022			
14	338 -> 343	0.43978	3.3517	369.91	0.0004
	339 -> 344	-0.24155			
	340 -> 345	-0.19630			
	341 -> 346	0.40963			
15	338 -> 343	0.48312	3.5202	352.20	0.0098
	339 -> 344	0.13500			
	341 -> 346	-0.44511			
16	331 -> 342	-0.15926	3.6078	343.65	0.2050
	336 -> 342	-0.23509			
	339 -> 345	0.59043			
17	333 -> 342	-0.27994	3.6240	342.12	0.0134
	336 -> 342	0.11734			
	337 -> 343	0.18974			
	338 -> 344	-0.22888			
	339 -> 345	0.12136			
	340 -> 346	0.33262			
	341 -> 347	0.34634			
	341 -> 348	-0.14380			
18	328 -> 342	0.11151	3.6438	340.26	0.0655
	329 -> 342	0.16449			
	331 -> 342	0.25215			
	333 -> 342	0.26880			
	335 -> 342	-0.12203			
	336 -> 342	0.42957			
	337 -> 342	-0.13089			
	339 -> 345	0.27631			
19	329 -> 342	-0.10587	3.6566	339.07	0.0005
	331 -> 342	0.58004			
	333 -> 342	0.13549			
	336 -> 342	-0.28905			
20	328 -> 342	0.10166	3.6710	337.74	0.0226
	329 -> 342	0.13190			
	331 -> 342	-0.21817			
	333 -> 342	0.47234			
	336 -> 342	-0.12709			
	337 -> 343	0.16745			
	338 -> 344	-0.17854			
	339 -> 345	-0.12149			
	341 -> 346	-0.10122			
	341 -> 347	0.23560			

Figure S11. Uv-vis absorption spectra as a function of molar extinction coefficient measured in dichloromethane of T4 (magenta), T8 (blue), TBT (green), T4-TBT (orange), and T8-TBT (red).

Figure S12. UV-vis absorption Spectra (left) and fluorescence emission (right) of **T4** in hexane (magenta), diethyl ether (blue), tetrahydrofuran (green), dichloromethane (navy), acetone (orange), and dimethyl formamide (red).

Figure S13. UV-vis absorption Spectra (left) and fluorescence emission (right) of **T8** in hexane (magenta), diethyl ether (blue), tetrahydrofuran (green), dichloromethane (navy), acetone (orange), and dimethyl formamide (red).

Figure S14. UV-vis absorption spectra (left) and fluorescence emission (right) of **TBT** in hexane (magenta), diethyl ether (blue), chloroform (cyan), tetrahydrofuran (green), dichloromethane (navy), acetone (orange), and dimethyl formamide (red).

Lippert-Mataga Plots

The Lippert-Mataga equation correlates the observed Stokes shift (Δv) with the orientational polarizability of each of the molecules in the solvent medium, where v_a and v_e are the absorption and fluorescence maxima energies, respectively, *h* is the Planck constant, *c* is the light speed, *r* is the molecular Onsager radius, $\Delta \mu$ is the dipole moment difference between the ground $\frac{2}{(\Delta \mu)_2}$

and excited states. The term $hc r^3$ is the slope of the plot of $f(\varepsilon, n) v_S \Delta v$, and $\Delta \mu$ is obtained from the slope using the molecular Onsager radius and the physical constants *h* and *c*.

$$\Delta \nu = \nu_a - \nu_e = \frac{2 (\Delta \mu)_2}{hc r^3} f(\varepsilon, n) + C$$
(S1)

$$f(\varepsilon, n) = \left(\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}\right)$$
(S2)

Figure S15. Lippert-Mataga plots of fluorescence data for T4-TBT and T8-TBT according to eqs. S1 and S2. (□) : T4-TBT. (●): T8-TBT. Solid lines are least squares fits of the data.

Figure S16. Fluorescence emission decays of **T4-TBT** (left column) and **T8-TBT** (right column) in different solvents: hexane (magenta), diethyl ether (blue), chloroform (green), dichloromethane (yellow), acetone (navy), tetrahydrofuran (orange), and dimethyl formamide (violet)

T4-TBT				T8-TBT		
Solvent	τ / ns	$k_{ m r}$ / 10^8 s ⁻¹	$k_{\rm nr}$ / 10 ⁸ s ⁻¹	τ / ns	$k_{\rm r}$ / 10^8 s ⁻¹	$k_{\rm nr}$ / 10 ⁸ s ⁻¹
Hex	1.8	1.9	3.4	1.5	2.6	4.1
Et2O	1.6	1.6	4.7	1.5	1.7	5.0
THF	1.63	1.1	5.0	1.1	1.3	7.8
CHCl3	1.3	1.2	6.5	1.1	1.3	7.8
DCM	1.3	0.77	6.9	0.55	0.54	17.6
Ace	0.42	0.71	23	0.52	0.20	19
DMF	0.23	3.9	39.6	0.23	0.09	43.4

Table S4. Rates of radiative and non-radiative processes ^a

^a Calculated according to the expressions $k_{nr} = 1/\tau$ and $k_r = \phi_{em}/\tau$ and $k_{nr} = k_r(1/\phi_{em} - 1)$ (see Table 2 in text for data). Median fluorescence lifetimes used when decays were biexponential. Median lifetimes calculated by using the following equation: $\langle \tau \rangle = \Sigma \alpha_i \tau_i$ where α_i and τ_1 are the normalized amplitude and lifetime for the decay components.

Figure S17. Nanosecond transient absorption of T4-TBT ($\lambda_{ex} = 410$ nm, 4 mJ/pulse, 5 ns fwhm) in hexane (top) and dichloromethane (bottom) along with time profile kinetic fit at 630 nm for both hexane and dichloromethane.

Figure S18. Nanosecond transient absorption of T8-TBT ($\lambda_{ex} = 410$ nm, 4 mJ/pulse, 5 ns fwhm) in hexane (top) and dichloromethane (bottom) along with the decay profile at 615 nm and 640 nm.

Figure S19. Femtosecond TA spectra of **TBT** in hexane (a) and in dichloromethane (b) at excitation wavelength of 450 nm.

Figure S20. Decay traces at 710 nm with exponential fits for TBT in hexane (a) and dichloromethane (b)

Table S5. Time constants for bi-exponential fit @ 710 nm for TBT transient absorption decays in hexane and dichloromethane

Solvent	ТВТ				
	τ_1	$ au_2$	$\mathbf{A_{inf}}$		
Hexane	67.5 ps (5.8%)	3.6 ns (56.2%)	38%		
DCM	69.3 ps (14.8%)	6.5 (59.7%)	25.5%		

The energy of the charge transfer state is estimated calculated the Weller equation (eq. S-3).⁸⁻¹⁰ In eq. S-1, $E_{1/2ox}$ is the first oxidation potential of T_4 and T_8 and $E_{1/2red}$ is the first reduction potential of **TBT**, r is the center-to-center distance of the (+) and (-) charges in the charge-separated state, e is the charge of an electron, ε_0 is the vacuum permittivity constant, ε_s is the dielectric constant of of the solvent, r^+ and r^- are the radii of the positive and negative ions, and ε_{ref} is the reference solvent dielectric constant, DCM (8.93). The center-to-center distance and the radical ion radii are estimated from the DFT (B3LYP; 6-31/G (d, p)) optimized geometries.

$$E_{CT} = E_{1/2ox} - E_{1/2red} - e^{2}/4\pi\epsilon_{0}\epsilon_{s}r - e^{2}/8\pi\epsilon_{0}(1/r^{+} + 1/r^{-})(1/\epsilon_{ref} - 1/\epsilon_{s})$$
(S-3)

References for Supporting Information

1. Stalder, R.; Xie, D.; Zhou, R.; Xue, J.; Reynolds, J. R.; Schanze, K. S. Variable-Gap Conjugated Oligomers Grafted to CdSe Nanocrystals. *Chem. Mater.* **2012**, *24*, 3143-3152.

2. Lu, C.; Fujitsuka, M.; Majima, T. Photoaccelerated Hole Transfer in Oligothiophene Assemblies. J. Phys. Chem. C 2017, 121, 649-655.

3. Cekli, S.; Winkel, R. W.; Schanze, K. S. Effect of Oligomer Length on Photophysical Properties of Platinum Acetylide Donor- Acceptor-Donor Oligomers. J. Phys. Chem. A **2016**, *120*, 5512-5521.

4. Jones, A. L.; Schanze, K. S. Fluorescent Charge-Transfer Excited States in Acceptor Derivatized Thiophene Oligomers. *J. Phys. Chem. A* **2020**, *124*, 7001-7013.

5. Gallaher, J. K.; Chen, K.; Huff, G. S.; Prasad, S. K. K.; Gordon, K. C.; Hodgkiss, J. M. Evolution of Nonmirror Image Fluorescence Spectra in Conjugated Polymers and Oligomers. *J. Phys. Chem. Lett.* **2016**, *7*, 3307-3312.

6. Kanato, H.; Narutaki, M.; Takimiya, K.; Otsubo, T.; Harima, Y. Synthesis and Photovoltaic Properties of Tetrathiafulvalene–Oligothiophene–Fullerene Triads. *Chem. Lett.* **2006**, *35*, 668-669.

7. Mulherin, R. C.; Jung, S.; Huettner, S.; Johnson, K.; Kohn, P.; Sommer, M.; Allard, S.; Scherf, U.; Greenham, N. C. Ternary Photovoltaic Blends Incorporating an All-Conjugated Donor-Accept- or Diblock Copolymer. *Nano Lett.* **2011**, *11*, 4846-4851.

8. Weller, A. Photoinduced Electron Transfer in Solution: Exciplex and Radical Ion Pair Formation Free Enthalpies and Their Solvent Dependence. **1982**, *133*, 93-98.

9. Kroon, J.; Oevering, H.; Verhoeven, J. W.; Warman, J. M.; Oliver, A. M.; Paddon-Row, M. N. Temperature Effects on Intramolecular Electron Transfer Kinetics under "Normal", "Inverted", and "Nearly Optimal" Conditions. *J. Phys. Chem.* **1993**, *97*, 5065-5069.

10. Oevering, H.; Paddon-Row, M. N.; Heppener, M.; Oliver, A. M.; Cotsaris, E.; Verhoeven, J. W.; Hush, N. S. Long-Range Photoinduced through-Bond Electron Transfer and Radiative Recombination Via Rigid Nonconjugated Bridges: Distance and Solvent Dependence. J. Am. Chem. Soc. **1987**, 109, 3258-3269.