Soft Phonon Modes Lead to Suppressed Thermal Conductivity in

Ag-Based Chalcopyrites under High Pressure

Kunpeng Yuan¹, Xiaoliang Zhang^{2*}, Yufei Gao², Dawei Tang^{2*}

¹College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.

²Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China.

*Corresponding author. zhangxiaoliang@dlut.edu.cn (X.Z.); dwtang@dlut.edu.cn (D.T.)

	Dreagune	This work		Exper	iment
	Pressure -	a (Å)	c (Å)	a (Å)	<i>c</i> (Å)
A ~ A 19	0 GPa	5.63	10.44	5.69	10.24
AgAI5 ₂	3 GPa	5.57	10.28		
A = A 19 =	0 GPa	5.91	11.03	5.95	10.71
AgAISe ₂	3 GPa	5.84	10.82		
A = A 1Ta	0 GPa	6.28	12.12	6.29	11.83
AgAI1e ₂	3 GPa	6.18	11.88		
AcCos	0 GPa	5.65	10.49	5.74	10.27
AgGa5 ₂	3 GPa	5.59	10.30		
AcCoSo	0 GPa	5.91	11.10	5.97	10.87
AgGaSe ₂	3 GPa	5.85	10.87		
A cCoTo	0 GPa	6.27	12.13	6.29	11.95
AgGa Te ₂	3 GPa	6.16	11.88		
AgInS	0 GPa	5.80	11.33	5.81	11.16
Agin5 ₂	3 GPa	5.72	11.16		
AgInSo	0 GPa	6.06	11.89	6.09	11.69
AginSe ₂	3 GPa	5.97	11.67		
AgInTe ₂	0 GPa	6.43	12.77	6.44	12.634
	3 GPa	6.31	12.52		

Table S1. Calculated lattice constants compared with experimental values.¹

				115	1 21.				
		Bond	length	Bond angle					
	Pressure	Ag-Y	X-Y	Y-Ag-Y	Y-Ag-Y	Y-X-Y	Y-X-Y	Ag-Y-X	Ag-Y-X
		(Å)	(Å)	(I)	(II)	(I)	(II)	(I)	(II)
AgAlS ₂ —	0 GPa	2.51	2.26	117.29°	105.71°	109.49°	109.46°	112.91°	107.01°
	3 GPa	2.47	2.24	117.40°	105.66°	109.94°	109.24°	113.22°	106.92°
A = A 1C =	0 GPa	2.61	2.40	116.20°	106.21°	109.95°	109.23°	112.77°	107.36°
AgAiSe ₂ -	3 GPa	2.57	2.37	116.48°	106.08°	110.50°	108.96°	113.21°	107.18°
A . A 1T.	0 GPa	2.75	2.63	113.03°	107.72°	109.79°	109.31°	111.33°	108.42°
AgAlle ₂ —	3 GPa	2.69	2.59	113.12°	107.68°	110.08°	109.17°	111.53°	108.34°
	0 GPa	2.50	2.29	116.70°	105.98°	110.07°	109.17°	113.04°	107.17°
AgGaS ₂ -	3 GPa	2.46	2.26	116.97°	105.86°	110.62°	108.90°	113.47°	107.00°
AcCoSo	0 GPa	2.60	2.43	115.43°	106.57°	110.21°	109.11°	112.61°	107.59°
AgGaSe ₂ -	3 GPa	2.56	2.39	115.85°	106.38°	110.83°	108.80°	113.14°	107.35°
AcCaTa	0 GPa	2.73	2.64	112.60°	107.93°	109.79°	109.31°	111.14°	108.55°
AgGale ₂ -	3 GPa	2.68	2.59	112.80°	107.83°	110.09°	109.16°	111. 3 9°	108.43°
A aInS.	0 GPa	2.51	2.48	111.18°	108.62°	110.24°	109.09°	110.70°	108.85°
Agin5 ₂ -	3 GPa	2.46	2.45	111.06°	108.68°	110.54°	108.94°	110.80°	108.81°
AgInSon	0 GPa	2.60	2.61	110.49°	108.96°	110.58°	108.92°	110.54°	108.94°
Agiii3e2	3 GPa	2.56	2.57	110.46°	108.98°	110.90°	108.76°	110.68°	108.87°
A gInTo-	0 GPa	2.74	2.81	108.89°	109.76	110.82	108.80	109.83°	109.25°
Agin1e ₂ –	3 GPa	2.69	2.76	108.80°	109.81	110.98	108.72	109.86°	109.22°

Table S2. Calculated bond lengths of Ag-Y and X-Y, and type I and II bond angles of Y-Ag-Y, Y-X-Y, and Ag-Y-X.

Figure S1. Phonon dispersions and atom-decomposed density of states (PDOS) of (a) AgGaS₂, (b) AgGaSe₂, and (c) AgGaTe₂.

Figure S2. Phonon dispersions and atom-decomposed density of states (PDOS) of (a) AgInS₂, (b) AgInSe₂, and (c) AgInTe₂.

Figure S3. Potential energy variation as a function of displacement for lowest transverse optical mode at the Γ point for (a) AgGaS₂, AgGaSe₂, and AgGaTe₂, and (b) for AgInS₂, AgInSe₂, and AgInTe₂.

Figure S4. Temperature-dependent mean square displacement for (a) AgGaS₂, AgGaSe₂, and AgGaTe₂, and (b) for AgInS₂, AgInSe₂, and AgInTe₂.

Figure S5. Pressure-dependent phonon dispersions of AgAlSe₂. (a) 0 GPa, (b) 1 GPa, (c) 2 GPa, (d) 3 GPa, and (e) 4 GPa.

Figure S6. Pressure-dependent phonon dispersions of AgGaSe₂. (a) 0 GPa, (b) 1 GPa, (c) 2 GPa, (d) 3 GPa, and (e) 4 GPa.

	Thermal conductivity (W/mK)						
-	This work	Experiment	Simulation ²				
AgAlS ₂	1.71	-	2.03				
AgAlSe ₂	1.33	-	0.94				
AgAlTe ₂	2.25	-	1.46				
AgGaS ₂	2.24	1.4 ³	2.23				
AgGaSe ₂	1.33	1.24	0.77				
AgGaTe ₂	2.60	1.94 ⁵	1.43				
AgInS ₂	2.35	-	2.05				
AgInSe ₂	1.92	1.1^{6}	0.89				
AgInTe ₂	2.48	2.05 ⁵	1.69				

 Table S3. The calculated thermal conductivity compared with experimental and simulation results. The calculated thermal conductivity is averaged over three directions.

Figure S7. Frequency decomposed thermal conductivity for (a) AgGaS₂, AgGaSe₂, and AgGaTe₂, and (b) for AgInS₂, AgInSe₂, and AgInTe₂ at 0 GPa and 3 GPa.

	Percentage contribution (%)							
-	0-2	ГHz	0-1	0-1 THz				
-	0 GPa	0 GPa 3 GPa		3 GPa				
AgAlS ₂	77.86	72.73	41.87	34.35				
AgAlSe ₂	81.02	70.64	54.31	50.65				
AgAlTe ₂	83.73	81.55	59.86	58.81				
AgGaS ₂	85.33	79.83	47.97	40.70				
AgGaSe ₂	85.46	74.54	53.08	46.94				
AgGaTe ₂	88.98	81.65	61.14	58.76				
AgInS ₂	90.30	84.91	62.95	53.05				
AgInSe ₂	90.41	81.52	70.23	64.65				
AgInTe ₂	91.38	82.65	67.91	63.54				

 Table S4. The percentage contribution of phonons in different frequency ranges to thermal conductivity.

 Parameters = contribution (0/)

Figure S8. Phonon group velocity for (a) AgGaS₂, AgGaSe₂, and AgGaTe₂, and (b) for AgInS₂, AgInSe₂, and AgInTe₂ at 0 GPa and 3 GPa.

			Г-Х			Г-Z		
	Pressure	v_{TA1}	v_{TA2}	v_{LA}	v_{TA1}	v_{TA1}	v_{LA}	
	0 GPa	2062	2581	4830	2062	2062	4625	
AgAlS ₂	3 GPa	1510	2312	5117	1510	1510	4793	
	(<i>v</i> _{3GPa} - <i>v</i> _{0GPa})/ <i>v</i> _{0GPa} (%)	-26.75	-10.43	5.94	-26.75	-26.75	3.64	
	0 GPa	1775	1962	3990	1775	1775	3767	
AgAlSe ₂	3 GPa	1360	1825	4082	1360	1360	3841	
	$(v_{3GPa}-v_{0GPa})/v_{0GPa}$ (%)	-23.42	-6.98	2.31	-23.42	-23.42	1.98	
	0 GPa	1629	1665	3456	1629	1629	3357	
AgAlTe ₂	3 GPa	1482	1562	3702	1482	1482	3570	
	$(v_{3GPa}-v_{0GPa})/v_{0GPa}$ (%)	-9.07	-6.17	7.11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-9.07	6.33	
	0 GPa	1996	2257	4371	1996	1996	4175	
AgGaS ₂	3 GPa	1591	2119	4614	1591	1591	4375	
	$(v_{3GPa}-v_{0GPa})/v_{0GPa}$ (%)	-20.29	υ_{TA2} υ_{LA} υ_{TA1} (m/s)(m/s)(m/s)258148302062231251171510-10.435.94-26.75196239901775182540821360-6.982.31-23.42166534561629156237021482-6.177.11-9.07225743711996211946141591-6.125.55-20.29190137381684165340091222-13.077.25-27.45159133041492147834701289-7.705.03-13.61183038781819165740861563-9.435.38-14.09153533181535137334611373-10.514.30-10.51142429921418	-20.29	4.79			
	0 GPa	1684	1901	3738	1684	1684	3573	
AgGaSe ₂	3 GPa	1222	1653	4009	1222	1222	3702	
	(<i>v</i> _{3GPa} - <i>v</i> _{0GPa})/ <i>v</i> _{0GPa} (%)	-27.45	-13.07	7.25	-27.45	-27.45	3.61	
	0 GPa	1492	1591	3304	1492	1492	3187	
AgGaTe ₂	3 GPa	1289	1478	3470	1289	1289	3372	
	$(v_{3GPa}-v_{0GPa})/v_{0GPa}$ (%)	-13.61	-7.70	5.03	-13.61	-13.61	5.80	
	0 GPa	1819	1830	3878	1819	1819	3788	
AgInS ₂	3 GPa	1563	1657	4086	1563	1563	3974	
	$(v_{3GPa}-v_{0GPa})/v_{0GPa}$ (%)	-14.09	-9.43	5.38	-14.09	-14.09	4.91	
	0 GPa	1523	1535	3318	1535	1535	3294	
AgInSe ₂	3 GPa	1329	1373	3461	1373	1373	3420	
	(<i>v</i> _{3GPa} - <i>v</i> _{0GPa})/ <i>v</i> _{0GPa} (%)	-12.74	-10.51	4.30	-10.51	-10.51	3.83	
AgInTe ₂	0 GPa	1418	1424	2992	1418	1418	3001	

Table S5. Calculated group velocities of transverse acoustic (TA) and longitudinal acoustic (LA) phonons around the Γ point for two representative pressures.

3 GPa	1146	1295	3209	1146	1146	3244
$(v_{3GPa}-v_{0GPa})/v_{0GPa}$ (%)	-19.17	-9.09	7.25	-19.17	-19.17	8.10

Figure S9 Phonon scattering rate for (a) AgGaS₂, AgGaSe₂, and AgGaTe₂, and (b) for AgInS₂, AgInSe₂, and AgInTe₂ at 0 GPa and 3 GPa.

Figure S10. Grüneisen parameter for (a) AgGaS₂, AgGaSe₂, and AgGaTe₂, and (b) for AgInS₂, AgInSe₂, and AgInTe₂ at 0 GPa and 3 GPa.

Figure S11. Weighted scattering phase space for (a) AgGaS₂, AgGaSe₂, and AgGaTe₂, and (b) for AgInS₂, AgInSe₂, and AgInTe₂ at 0 GPa and 3 GPa.

Figure S12. Cross-calculated thermal conductivity along the (a) a/b and (b) c axis with phonon specific heat c_{ph} , group velocity v_g , and relaxation time τ replaced with high-pressure values.

Figure S13. The calculated COHP for the Ag-Y and Ga-Y bonds of AgGaS₂, AgGaSe₂, and AgGaTe₂ at 0 GPa and 3 GPa. (a) Ag-S, (b) Ga-S, (c) Ag-Se, (d) Ga-Se, (e) Ag-Te, and (f) Ga-Te.

Figure S14. The calculated COHP for the Ag-Y and In-Y bonds of AgInS₂, AgInSe₂, and AgInTe₂ at 0 GPa and 3 GPa. (a) Ag-S, (b) In-S, (c) Ag-Se, (d) In-Se, (e) Ag-Te, and (f) In-Te.

	D	Transferred electron e			Shared electron e		
	Pressure -	Ag	X ^{III}	$\mathbf{Y}^{\mathbf{VI}}$	Ag-Y ^{VI}	$X^{III}\text{-}Y^{VI}$	
A ~ A 19	0 GPa	0.424	1.102	-0.763	0.884	1.002	
AgAI5 ₂	3 GPa	0.438	1.114	-0.776	0.926	1.016	
A = A 15 =	0 GPa	0.352	0.904	-0.628	0.891	1.023	
AgAise ₂	3 GPa	0.365	0.923	-0.644	0.939	1.041	
A c A ITe-	0 GPa	0.225	0.606	-0.415	0.971	1.055	
AgAlTe ₂ -	3 GPa	0.238	0.633	-0.435	1.031	0.082	
Acces	0 GPa	0.367	0.806	-0.587	0.904	1.070	
AgGaS ₂	3 GPa	0.378	0.811	-0.594	0.944	1.097	
AcCaSa	0 GPa	0.290	0.638	-0.464	0.917	1.051	
AgGaSe2	3 GPa	0.297	0.643	-0.470	0.962	1.085	
AgCaTa	0 GPa	0.153	0.403	-0.278	1.000	1.047	
	3 GPa	0.159	0.408	-0.284	1.059	1.092	
A gInS.	0 GPa	0.370	0.893	-0.631	0.924	1.043	
Agiii52	3 GPa	0.380	0.898	-0.639	0.975	1.075	
AgInSe ₂	0 GPa	0.302	0.737	-0.519	0.933	1.028	
	3 GPa	0.308	0.742	-0.525	0.989	1.068	
AgInTe ₂	0 GPa	0.178	0.520	-0.349	1.002	1.032	
	3 GPa	0.184	0.524	-0.354	1.071	1.084	

Table S6. The transferred and shared electrons between atoms in $AgXY_2$ (X = Al, Ga, In; Y = S, Se, Te).

References

1. Shay, J. L.; Wernick, J. H., Ternary chalcopyrite semiconductors: growth, electronic properties, and applications. Pergamon: Oxford, U.K., 1975.

2. Plata, J. J.; Posligua, V.; Márquez, A. M.; Fernandez Sanz, J.; Grau-Crespo, R., Charting the lattice thermal conductivities of I–III–VI₂ chalcopyrite semiconductors. *Chemistry of Materials* 2022, 34, 2833-2841.

3. Catella, G. C.; Burlage, D., Crystal growth and optical properties of AgGaS₂ and AgGaSe₂. *MRS Bulletin* 2013, 23, 28-36.

4. Aggarwal, R. L.; Fan, T. Y., Thermal diffusivity, specific heat, thermal conductivity, coefficient of thermal expansion, and refractive-index change with temperature in AgGaSe₂. *Applied Optics* 2005, 44, 2673-2677.

5. Charoenphakdee, A.; Kurosaki, K.; Muta, H.; Uno, M.; Yamanaka, S., Thermal conductivity of the ternary compounds: $AgMTe_2$ and AgM_5Te_8 (M = Ga or In). *Materials Transactions* 2009, 50, 1603-1606.

6. Qiu, P.; Qin, Y.; Zhang, Q.; Li, R.; Yang, J.; Song, Q.; Tang, Y.; Bai, S.; Shi, X.; Chen, L., Intrinsically high thermoelectric performance in AgInSe₂ n-type diamond-like compounds. *Advanced Science* 2018, 5, 1700727.