Electronic Supplementary Information

Electron delocalization in defected graphene and its ability to the tetrel bonds formation

Ekaterina V. Bartashevich, *a Elena O. Levina^{a,b}, Irina D. Yushina, a Sergey A. Sozykin, a and Vladimir G. Tsirelson^{a,c}

^{*a.*} South Ural State University, 454080 Chelyabinsk, Russia.

^{b.} N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119071 Moscow, Russia.

^{*c.*} D.I. Mendeleev University of Chemical Technology, 125047 Moscow, Russia.

Figure S1. Histograms showing the C_g-C_g bond length distribution and distribution of electron density at bcp for C_g-C_g bonds a,c) in graphene with a vacancy b,d) in graphene with Si-defect

Figure S2. Scheme of directions in defected graphene for analysis of defect influence on electron density distribution at bcp of the ordinary C_g – C_g bonds a) in Si-defected layer and b) in vacancy-defected graphene. Electron density at bond critical points moving away from a defect in various directions c) in Si-defected layer and d) in vacancy-defected graphene

Figure S3. Deformation density, $\delta\rho(\mathbf{r})$, in planes perpendicular to graphene layer for the defectfree graphene (a,b) and for the graphene with a vacancy (c,d,e). Planes b) and e) contain C_g-C_g covalent bonds, which in the case of defected graphene belongs to the vacancy edge (i.e. $C_g^2-C_g^3$ bond, see Fig. 3a). Planes c), d) contain $C_g^1...C_g^5$ and $C_g^5...C_g^9$ noncovalent bonds in the vacancy region (Fig. 3a), while plane (a) corresponds to the similar plane in defect-free graphene.

Figure S4. The fermionic potential, $v_f(r)$, distribution in the defect-free graphene (a) and benzene molecule (b). The values of the depicted isosurfaces are given in the a.u.

Figure S5. Interatomic distances for noncovalent bonds in the systems ranked by E_{int} "DGEBA – vacancy-defected graphene": a) pseudopotential basis sets; b) full-electron basis sets; "DGEBA – Si-defected graphene": c) pseudopotential basis sets; d) full-electron basis sets. Electron density at bcp of noncovalent bonds calculated in pseudopotential basis sets: e) vacancy-defected models; f) Si-defected models

b

Figure S6. Bond paths for interactions of DGEBA and defect-free graphene C_g atoms according to a) full-electron computation; b) pseudopotential computation

Figure S7. Distributions of the values of electron density at bcp $C_g...H$ a) for the graphene-DGEBA models with vacancy (three relatively strongest bonds formed by CH_2 or CH_3 groups DGEBA with C_g belonging to the edge of defect are in the right); b) for models with Si-defect. Distributions of electron density at bcp for $C^g...O$ bonds: c) in systems "DGEBA – graphene with vacancy"; d) in systems "DGEBA – graphene with Si-defect"

Figure S8. The fermionic potential, $v_f(r)$, distribution (-0.25 a.u.) in the graphene layer of the graphene-DGEBA systems with a vacancy (V9 and V1 systems). The $\Delta E_{int} = E_{int}(system) - E_{int}(ideal graphene)$ is shown on the each frame.

Figure S9. Superposition of the boundaries of atomic basins in electrostatic potential and electron density along the line of a) $C_g \dots C_{ep}$ interaction (C_{ep} in DGEBA near the epoxy O) in V4 model; b) $C_g \dots C_{ep}$ interaction (C_{ep} in DGEBA near the epoxy O) in S7 model; c) the polar intralayer $C_g \dots C_g$ bond for graphene with the vacancy; d) the nonpolar intralayer $C_g \dots C_g$ bond for graphene with the vacancy; d) the nonpolar intralayer $C_g \dots C_g$ bond for graphene; f) tetrel bond $C_g \dots O$ (epoxy oxygen) for DGEBA and defected-free graphene; f) tetrel bond $C_g \dots O$ (ether oxygen) for DGEBA and defected-free graphene; g) relatively strong Si...C_g interaction in Si-defect (S7 model); h) weak Si...C_g interaction in Si-defect (S2 model).

Figure S10. Fermionic potential -0.200 a.u. isosurface for the O atom in the isolated complex of ethylene oxide and four condensed benzene rings.

Figure S11. The fermionic potential, $v_f(r)$, in the graphene-DGEBA system (model S7). 3D distribution is shown only for the graphene layer (-0.25 a.u. isosurface), while 2D maps are depicted $v_f(r)$ in the planes of the DGEBA aryl rings. All of them include $C_{ar}-C_{ar}$ bonds and are orthogonal to the plane of the corresponding aryl ring.

Figure S12. The fermionic potential, $v_f(r)$, in the graphene-DGEBA system (model S2). 3D distribution is shown only for the graphene layer (-0.25 a.u. isosurface), while 2D maps are depicted $v_f(r)$ in the planes of the DGEBA aryl rings. All of them include $C_{ar}-C_{ar}$ bonds and are orthogonal to the plane of the corresponding aryl ring.

	E _{rel}	E _{int}	E _{int}	E _{int}	E _{int}	E _{rel}	E _{int}
			+BSSE	noRelax	noRelax		
	D 1	 / / 1 1		+BSSE		F 11 1 4	
	Pseudop	otential cal	Iculations			Full-electron	c calculations
Defect-free	-	-35.1	-25.9	-26.6	-35.7	-	-13.7
V1	3.9	-34.4	-25.2	-26.2	-35.3	5.5	-19.5
V2	3.0	-35.3	-25.7	-26.5	-36.1	4.4	-20.5
V3	3.3	-34.9	-25.3	-26.5	-36.1	5.1	-19.8
V4	3.5	-34.8	-25.7	-26.4	-35.6	3.7	-21.3
V5	3.1	-35.2	-25.7	-26.8	-36.3	4.2	-20.8
V6	4.0	-34.3	-25.0	-26.5	-35.8	5.2	-19.8
V7	3.3	-35.0	-25.6	-26.6	-36.1	4.7	-20.2
V8	3.0	-35.3	-26.2	-27.1	-36.1	2.2	-22.8
V9	0.0	-38.3	-27.8	-28.8	-39.2	0.0	-25.0
S1	8.3	-35.2	-25.8	-26.1	-35.4	5.6	-20.3
S2	5.1	-38.3	-27.7	-29.6	-40.2	4.1	-21.7
S3	5.7	-37.8	-27.9	-28.2	-38.1	4.1	-21.8
S4	8.0	-35.5	-26.4	-26.9	-36.0	6.2	-19.7
S5	6.5	-36.9	-27.3	-27.7	-37.3	4.8	-21.1
S6	6.3	-37.2	-27.4	-27.7	-37.5	3.7	-22.2
S7	0.0	-43.4	-32.6	-39.0	-49.8	0.0	-25.8
S8	8.4	-35.0	-25.4	-27.6	-37.2	3.7	-22.2
S9	6.6	-36.8	-26.8	-28.4	-38.4	3.6	-22.3

Table S1. The relative energy (E_{rel} , kcal/mol) and the interaction energy (E_{int} , kcal/mol) for the systems of DGEBA and graphene with a vacancy (V-models), and with a Si-defect (S-models).

Table S2. The bond length and the properties of electron density at the bond critical points for noncovalent bonds in the systems of DGEBA and graphene with a vacancy. (The bonds in italics refer to intralayer bonds).

Model	Noncovalent bond	Bond Length, Å	Electron density, ρ(rbcp), a.u.	Laplacian of electron density, $\nabla 2\rho(rbcp)$, a.u.	Kinetic energy density, g(rbcp), a.u.	Potential energy density, v(rbcp), a.u.
V1	H10C66	2.663	0.008	0.029	0.006	-0.004
	C86O166	3.449	0.003	0.017	0.003	-0.002
	H17C105	2.615	0.009	0.032	0.007	-0.005
	H5C58	2.992	0.004	0.018	0.003	-0.002
	H6C59	2.706	0.007	0.026	0.005	-0.004
	H4C80	2.822	0.006	0.023	0.004	-0.003
	H9C81	2.682	0.008	0.028	0.006	-0.004
	H22C91	2.588	0.009	0.035	0.007	-0.005
	C83O167	3.138	0.006	0.026	0.005	-0.004
	C91C101	2.481	0.033	0.066	0.016	-0.016
	C91C110	1.893	0.119	-0.088	0.027	-0.076

	C101C110	2.496	0.032	0.066	0.016	-0.015
V2	H17C85	2.800	0.006	0.025	0.005	-0.003
	H10C57	2.612	0.009	0.033	0.007	-0.005
	H17C86	2.809	0.006	0.028	0.005	-0.004
	H5C47	2.982	0.004	0.017	0.003	-0.002
	H6C59	2.677	0.008	0.026	0.005	-0.004
	H4C79	2.767	0.006	0.023	0.004	-0.003
	H9C89	2.737	0.007	0.024	0.005	-0.003
	C110C163	3.084	0.008	0.034	0.007	-0.005
	C81C100	1.883	0.121	-0.097	0.027	-0.079
	C81C89	2.495	0.032	0.067	0.016	-0.015
	C100C89	2.487	0.032	0.067	0.016	-0.016
V3	H17C95	2.761	0.007	0.025	0.005	-0.004
	C85O166	3.267	0.005	0.024	0.005	-0.003
	H10C57	2.656	0.008	0.030	0.006	-0.005
	H5C48	3.101	0.003	0.013	0.002	-0.001
	H6C60	2.547	0.010	0.030	0.006	-0.005
	H4C88	2.859	0.005	0.023	0.004	-0.003
	H9C99	2.670	0.008	0.031	0.006	-0.005
	H22C121	2.714	0.008	0.032	0.006	-0.004
	H21C131	3.065	0.003	0.015	0.003	-0.002
	C69C88	1.870	0.124	-0.108	0.028	-0.083
	C69C79	2.494	0.032	0.067	0.016	-0.015
	C88C79	2.483	0.033	0.067	0.016	-0.016
V4	H17C95	2.673	0.008	0.028	0.006	-0.004
	C85O166	3.363	0.004	0.021	0.004	-0.003
	H10C65	2.582	0.009	0.034	0.007	-0.005
	H5C58	3.054	0.004	0.017	0.003	-0.002
	H4C78	2.873	0.005	0.021	0.004	-0.003
	H6C59	2.395	0.016	0.038	0.009	-0.009
	H9C88	2.611	0.009	0.033	0.007	-0.005
	C163C110	3.087	0.007	0.032	0.006	-0.005
	C59C48	2.507	0.031	0.066	0.016	-0.015
	C67C48	1.885	0.122	-0.099	0.027	-0.079
	C59C67	2.506	0.031	0.066	0.016	-0.015
V5	H17C95	2.729	0.007	0.026	0.005	-0.004
	C85O166	3.224	0.005	0.025	0.005	-0.004
	H10C57	2.664	0.008	0.029	0.006	-0.004
	C77C152	3.241	0.006	0.027	0.005	-0.003
	H5C48	2.894	0.005	0.019	0.003	-0.002
	H4C78	2.790	0.006	0.023	0.004	-0.003
	H6C59	2.643	0.009	0.029	0.006	-0.005
	H9C99	2.657	0.008	0.030	0.006	-0.004
	H22C121	2.728	0.007	0.032	0.006	-0.004
	H21C131	3.077	0.003	0.015	0.003	-0.002
	C59C78	1.869	0.125	-0.109	0.028	-0.083

	C59C67	2.484	0.033	0.067	0.016	-0.016
	C78C67	2.485	0.033	0.067	0.016	-0.016
V6	H17C95	2.726	0.007	0.026	0.005	-0.004
	H10C66	2.778	0.006	0.026	0.005	-0.003
	H18C96	2.866	0.005	0.024	0.004	-0.003
	C152C77	3.129	0.007	0.030	0.006	-0.004
	H5C58	2.794	0.006	0.025	0.005	-0.003
	H4C87	2.842	0.005	0.019	0.004	-0.002
	H6C59	2.653	0.008	0.030	0.006	-0.005
	H9C99	2.649	0.008	0.030	0.006	-0.005
	H22C121	2.733	0.007	0.032	0.006	-0.004
	C110O167	3.082	0.007	0.032	0.006	-0.005
	C58C67	2.490	0.032	0.067	0.016	-0.015
	C58C77	1.872	0.124	-0.107	0.028	-0.082
	C67C77	2.487	0.032	0.067	0.016	-0.016
V7	H17C104	2.647	0.008	0.031	0.006	-0.005
	O166C105	3.232	0.005	0.026	0.005	-0.004
	H10C85	2.751	0.007	0.027	0.005	-0.004
	H5C67	2.731	0.007	0.028	0.005	-0.004
	H4C87	2.792	0.006	0.022	0.004	-0.003
	H6C68	2.683	0.008	0.026	0.005	-0.004
	H9C99	2.637	0.009	0.031	0.006	-0.005
	H22C121	2.734	0.007	0.031	0.006	-0.004
	C67C86	1.868	0.125	-0.111	0.028	-0.084
	C67C77	2.485	0.033	0.067	0.016	-0.016
	C77C86	2.488	0.032	0.067	0.016	-0.015
V8	H17C85	2.311	0.019	0.042	0.011	-0.012
	H10C57	2.690	0.008	0.029	0.006	-0.004
	H5C47	2.945	0.004	0.018	0.003	-0.002
	H6C40	2.816	0.006	0.024	0.005	-0.003
	H4C69	2.920	0.005	0.023	0.004	-0.003
	H9C89	2.691	0.008	0.027	0.005	-0.004
	H22C101	2.730	0.007	0.028	0.005	-0.004
	O167C91	3.039	0.007	0.031	0.006	-0.005
	C77C96	1.892	0.120	-0.095	0.026	-0.077
	C77C85	2.518	0.030	0.066	0.015	-0.014
	C96C85	2.511	0.030	0.067	0.016	-0.015
V9	H4C98	2.968	0.004	0.017	0.003	-0.002
	H5C67	2.804	0.006	0.021	0.004	-0.003
	H6C79	2.697	0.008	0.028	0.006	-0.004
	H9C108	2.763	0.007	0.025	0.005	-0.003
	H10C77	2.848	0.005	0.021	0.004	-0.003
	H17C85	3.180	0.003	0.012	0.002	-0.001
	H18C97	2.380	0.016	0.038	0.010	-0.010
	H20C104	2.642	0.009	0.030	0.006	-0.005
	H22C110	2.812	0.007	0.029	0.006	-0.004

O167C111	3.068	0.007	0.031	0.006	-0.005
C86C97	2.508	0.030	0.066	0.016	-0.015
C86C105	1.887	0.121	-0.097	0.027	-0.078

Table S3. The bond length and the properties of electron density at the bond critical points for noncovalent bonds in the systems of DGEBA and Si-defected graphene.

		D 1	Electron	Laplacian of	Kinetic	Potential
Madal	Noncovalent	Bond	density,	electron	energy	energy
Model	bond	Length,	$\rho(\mathbf{r}_{bcp}),$	density,	density,	density,
		A	a.u.	$\nabla^2 \rho(\mathbf{r}_{bcp})$, a.u.	$g(\mathbf{r}_{bcp}), a.u.$	$v(\mathbf{r}_{bcp})$, a.u.
S1	H4C79	2.702	0.0070	0.0247	0.0049	-0.0035
	H6C59	2.681	0.0076	0.0247	0.0050	-0.0037
	H9C89	2.608	0.0092	0.0322	0.0066	-0.0051
	H10C66	2.645	0.0088	0.0316	0.0064	-0.0049
	H17C85	2.726	0.0071	0.0271	0.0053	-0.0038
	H21C132	2.862	0.0055	0.0223	0.0042	-0.0028
	C122H22	2.808	0.0065	0.0290	0.0055	-0.0037
	C103O168	3.192	0.0052	0.0245	0.0049	-0.0037
S2	H5C68	2.942	0.0043	0.0185	0.0033	-0.0021
	H6C80	2.640	0.0091	0.0288	0.0059	-0.0047
	H9C109	2.610	0.0088	0.0335	0.0066	-0.0049
	H10C78	2.774	0.0073	0.0321	0.0061	-0.0041
	H17C96	2.636	0.0089	0.0300	0.0061	-0.0048
	H22C130	2.783	0.0064	0.0247	0.0047	-0.0032
	SI90C152	3.391	0.0088	0.0208	0.0046	-0.0039
	C122O168	3.049	0.0073	0.0318	0.0066	-0.0053
S3	H4C88	2.781	0.0059	0.0214	0.0041	-0.0028
	H5C57	2.911	0.0047	0.0188	0.0034	-0.0022
	H6C67	2.634	0.0086	0.0299	0.0061	-0.0047
	H9C100	2.541	0.0098	0.0316	0.0066	-0.0054
	H10C76	2.817	0.0060	0.0236	0.0045	-0.0031
	H17C105	2.572	0.0095	0.0334	0.0068	-0.0053
	C164C111	3.093	0.0072	0.0325	0.0063	-0.0045
	H22C121	2.802	0.0060	0.0244	0.0046	-0.0031
	C77C153	3.158	0.0071	0.0318	0.0061	-0.0042
	C96O167	3.543	0.0024	0.0154	0.0028	-0.0017
	C102O168	3.065	0.0071	0.0319	0.0066	-0.0053
S4	H4C88	2.905	0.0047	0.0181	0.0033	-0.0022
	H5C58	2.943	0.0044	0.0185	0.0034	-0.0021
	H6C69	2.636	0.0088	0.0349	0.0070	-0.0052
	H7C48	3.202	0.0028	0.0111	0.0020	-0.0011
	H9C100	2.736	0.0072	0.0268	0.0052	-0.0038
	H10C66	2.585	0.0094	0.0339	0.0069	-0.0053
	H17C85	2.683	0.0079	0.0281	0.0056	-0.0042
	H18C97	2.973	0.0043	0.0196	0.0036	-0.0023
	H22C122	2.743	0.0070	0.0298	0.0056	-0.0038

	O168C112	3.023	0.0075	0.0324	0.0067	-0.0054
S5	H4C89	2.778	0.006	0.024	0.004	-0.003
	H5C48	3.024	0.003	0.014	0.002	-0.001
	H6C60	2.581	0.010	0.034	0.007	-0.006
	H9C101	2.674	0.008	0.030	0.006	-0.004
	H10C57	2.581	0.010	0.035	0.007	-0.006
	H17C86	2.687	0.008	0.031	0.006	-0.004
	H21C132	3.092	0.003	0.015	0.003	-0.002
	H22C122	2.701	0.007	0.029	0.005	-0.004
	C77O167	3.215	0.006	0.026	0.005	-0.004
	O168C112	3.018	0.007	0.031	0.006	-0.005
S6	H4C80	2.781	0.006	0.023	0.004	-0.003
	H5C48	2.962	0.004	0.016	0.003	-0.002
	H6C60	2.513	0.011	0.034	0.007	-0.006
	H9C89	2.802	0.006	0.028	0.005	-0.004
	H10C57	2.519	0.011	0.034	0.007	-0.006
	H17C85	2.598	0.009	0.033	0.007	-0.005
	O167C86	3.114	0.007	0.029	0.006	-0.005
	H22C122	2.718	0.008	0.032	0.006	-0.004
	O168C111	3.101	0.007	0.032	0.006	-0.005
S7	H4C99	2.651	0.009	0.029	0.006	-0.005
	H6C79	2.698	0.008	0.025	0.005	-0.004
	H9C109	2.486	0.011	0.035	0.008	-0.006
	SI78C153	2.392	0.046	-0.005	0.013	-0.027
	H17C85	2.754	0.007	0.026	0.005	-0.003
	H18C97	2.625	0.009	0.032	0.006	-0.005
	C164C131	3.116	0.007	0.030	0.006	-0.004
S8	H4C80	2.900	0.005	0.020	0.004	-0.002
	H5C67	2.955	0.005	0.022	0.004	-0.003
	H6C59	2.651	0.009	0.029	0.006	-0.005
	H9C100	2.709	0.008	0.030	0.006	-0.004
	H10C66	2.810	0.006	0.022	0.004	-0.003
	H17C96	2.611	0.009	0.031	0.006	-0.005
	H18C97	2.695	0.008	0.030	0.006	-0.004
	H20C117	2.838	0.005	0.023	0.004	-0.003
	H22C122	2.754	0.007	0.032	0.006	-0.004
S9	H4C80	2.872	0.005	0.022	0.004	-0.003
	H5C67	3.034	0.004	0.019	0.003	-0.002
	H6C60	2.671	0.008	0.028	0.006	-0.004
	H9C110	2.762	0.007	0.024	0.005	-0.003
	H10C66	2.785	0.006	0.023	0.004	-0.003
	H17C85	2.626	0.009	0.032	0.007	-0.005
	H18C98	2.809	0.006	0.021	0.004	-0.003
	H20C126	2.770	0.006	0.023	0.004	-0.003
	H21C132	3.088	0.003	0.015	0.003	-0.002
	O168C112	3.069	0.007	0.031	0.006	-0.005

H22	C122	2.695	0.008	0.031	0.006	-0.004
-----	------	-------	-------	-------	-------	--------

Table S4. Visual analysis of the mutual orientations for lone electron pairs (LP) of ether (O_{et}) and epoxy (O_{ep}) oxygen, centres of (C_g – C_g) bonds, areas above C_g atoms in the π -plane, $\pi(C_g)$, ring critical points (rcp) in the systems of DGEBA and defected graphene

Model	Noncovalent		Types of orientation	
	bond			1
V1	C86O166	$O_{et \leftrightarrow} C_g - C_g$	$LP(O_{et}) \leftrightarrow C_g - C_g$	
V1	C83O167	$O_{ep \leftrightarrow} C_g - C_g$	$LP(O_{ep}) \leftrightarrow ring$	$LP(O_{ep}) \leftrightarrow ring^*$
V3	C85O166	$O_{et \leftrightarrow} C_g - C_g$	$LP(O_{et}) \leftrightarrow rcp$	
V4	C85O166	$O_{et \leftrightarrow} C_g - C_g$	$LP(O_{et}) \leftrightarrow ring$	
V5	C85O166	$O_{et \leftrightarrow} \pi(C_g)$	$LP(O_{et}) \leftrightarrow C_g - C_g$	
V6	C110O167	$O_{ep \leftrightarrow} ring (C_g)$	$LP(O_{ep}) \leftrightarrow ring$	$LP(O_{ep}) \leftrightarrow ring$
V7	O166C105	$O_{et \leftrightarrow} C_g - C_g$	$LP(O_{et}) \leftrightarrow rcp$	
V8	O167C91	$O_{ep \leftrightarrow} ring (C_g)$	$LP(O_{ep}) \leftrightarrow C_g - C_g$	$LP(O_{ep}) \leftrightarrow ring$
V9	O167C111	$O_{ep \leftrightarrow} ring (C_g)$	$LP(O_{ep}) \leftrightarrow C_g - C_g$	$LP(O_{ep}) \leftrightarrow ring$
S1	C103O168	$O_{ep \leftrightarrow} ring (C_g)$	$LP(O_{ep}) \leftrightarrow C_g - C_g$	$LP(O_{ep}) \leftrightarrow C_g$ -Si
S2	C122O168	$O_{ep \leftrightarrow} ring (C_g)$	$LP(O_{ep}) \leftrightarrow C_g - C_g$	$LP(O_{ep}) \leftrightarrow \pi(C_g)$
S3	C96O167	$O_{et \leftrightarrow} rcp$	$LP(O_{et}) \leftrightarrow rcp$	
S3	C102O168	$O_{ep \leftrightarrow} ring (C_g)$	$LP(O_{ep}) \leftrightarrow rcp$	$LP(O_{ep}) \leftrightarrow C_g - C_g$
S4	O168C112	$O_{ep \leftrightarrow} C_g - C_g$	$LP(O_{ep}) \leftrightarrow ring$	$LP(O_{ep}) \leftrightarrow ring$
S5	C77O167	$O_{et \leftrightarrow} C_g - C_g$	$LP(O_{et}) \leftrightarrow rcp$	
S5	O168C112	$O_{ep \leftrightarrow} \pi(C_g)$	$LP(O_{ep}) \leftrightarrow C_g - C_g$	$LP(O_{ep}) \leftrightarrow rcp$
S6	O167C86	$O_{et \leftrightarrow} C_g - C_g$	$LP(O_{et}) \leftrightarrow rcp$	
S6	O168C111	$O_{ep \leftrightarrow} C_g - C_g$	$LP(O_{ep}) \leftrightarrow ring$	$LP(O_{ep}) \leftrightarrow ring$
S9	O168C112	$O_{ep} \leftrightarrow C_g - C_g$	$LP(O_{ep}) \leftrightarrow C_g - C_g$	$LP(O_{ep}) \leftrightarrow \pi(C_g)$

*ring – the case when it is difficult to describe disposition of element, but it is obvious that it hangs near the area of graphene ring, not over the center.