Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2023

Supplementary information

Enhanced CO adsorption on α-graphyne-supported and defective

graphene-supported Cu₁₉ clusters and modified induction energy

model

Delu Gao, Naigui Liu, Dunyou Wang*

College of Physics and Electronics, Shandong Normal University, Jinan 250014,

Shandong, China

*Corresponding Author. Electronic mail: *dywang@sdnu.edu.cn*

Table S1. Bader charge (e^{-}) distribution for each Cu atom of Cu₁₉ in Cu₁₉/ α GY and Cu₁₉/G. The "-" indicates charge transfer from Cu₁₉ to α -graphyne and defective graphene in Cu₁₉/ α GY and Cu₁₉/G relative to the pure Cu₁₉ cluster.

Atom	Charge transfer to $Cu_{19}/\alpha GY$	Charge transfer of Cu ₁₉ /G
Cu–1	-0.012	0.013
Cu–2	0.018	0.023
Cu–3	-0.008	-0.006
Cu–4	-0.007	0.022
Cu–5	0.022	0.019
Cu–6	0.002	0.003
Cu–7	-0.010	-0.036
Cu–8	0.027	0.010
Cu–9	-0.001	0.013
Cu-10	-0.001	0.003
Cu-11	0.019	0.014
Cu-12	-0.011	-0.018
Cu-13	0.006	-0.042
Cu-14	-0.193	-0.203
Cu-15	-0.219	-0.195
Cu-16	-0.210	-0.161
Cu-17	-0.233	-0.202
Cu-18	-0.206	-0.212
Cu-19	-0.121	-0.534
Total	-1.14	-1.49

Fig. S1. The center of charge and the center of mass of Cu_{19} in $Cu_{19}/\alpha GY$ and Cu_{19}/G . The green point refers to the center of mass and the blue point refers to the center of charge.

Fig. S2. Three representative AIMD trajectories of potential energy versus time for the adsorption of CO on Cu₁₉, Cu₁₉/ α GY and Cu₁₉/G. (a) Cu₁₉. (b) Cu₁₉/ α GY. (c) Cu₁₉/G. First, CO molecule comes in from the asymptotic region at about 7.5 Å above the substrate to attack the cluster, and is adsorbed on the adsorption site at about 100 fs. Then the AIMD trajectories show the systems evolve to stabilize at about 800 fs. The adsorption states then are obtained by optimizing the final stable structures of the entire system identified from the AIMD trajectories.

			ad
Adsorpt	ion sites	ICOHP	E^{aa}
	T1	-2.04	-1.35
	T2	-1.74	-1.17
	T3	-1.59	-1.01
	T1/aCV	2.42	1.24
	$11/\alpha GY$	-2.42	-1.34
	T2-1/αGY	-2.29	-1.32
Тор	T2-2/αGY	-2.24	-1.41
	T3/aGY	-2.11	-1.28
	T1/G	-2.75	-1.54
	T2-1/G	-2.53	-1.34
	T2-2/G	-2.56	-1.40
	T3/G	-2.36	-1.40
	B1	-2.75	-0.96
	B2	-2.69	-0.97
Bridge	B1/aGY	-3.65	-1.16
	B1-1/G	-3.91	-1.37
	B1-2/G	-4.15	-1.40
	H1	-3.50	-0.89
Hollow	H1/aGY	-4.86	-1.25
	H1/G	-5.38	-1.43

Table S2. ICOHP values and adsorption energies (in eV) for all adsorption sites of CO adsorption on Cu_{19} , $Cu_{19}/\alpha GY$ and Cu_{19}/G .

Adsorption state		R _{cont}	R _{co}	r _{core}	$V_{ind}(R_{eff})$
	T1(T1/G)	5.06	7.54	4.34	-0.18
	$T2(T2-1/\alpha GY)$	4.20	6.29	2.79	-0.12
	T2(T2-2/αGY)	2.67	5.13	2.32	-0.29
Cu ₁₉ /aGY	$T3(T3/\alpha GY)$	2.69	5.03	2.26	-0.31
	$B1(B1/\alpha GY)$	2.82	5.18	2.44	-0.33
	$H1(H1/\alpha GY)$	2.74	5.24	2.42	-0.29
	T1(T1/G)	5.39	7.85	4.63	-0.30
	T2(T2-1/G)	4.66	6.53	3.22	-0.26
	T2(T2-2/G)	2.77	5.19	2.34	-0.48
Cu_10/G	T3(T3/G)	2.93	5.01	2.23	-0.55
	B1(B1-1/G)	3.09	5.40	2.40	-0.39
	B1(B1-2/G)	2.21	4.28	0.82	-0.20
	H1(H1/G)	2.86	5.39	2.48	-0.44

Table S3. The values (Å) of R_{cont} , R_{co} and r_{core} and the induction energy $V_{ind}(R_{eff})$ (eV) on Cu₁₉/ α GY and Cu₁₉/G for the modified induction energy model.

Table S4. The predicted adsorption energy E_{supp}^{pred} of Cu₁₉ supported by α -graphyne and

defective graphene calculated using our original induction energy model. $E_{Cu_{19}}^{ad}$ is the adsorption energy of Cu₁₉, and E_{supp}^{ad} is the adsorption energy on Cu₁₉/ α GY or Cu₁₉/G. The parameters of R_{cont} , R_{cc} and r_{core} to calculate $V_{ind}(R_{eff})$ are presented in Table S5. The units of adsorption energies are in eV.

Adsorption	ı state	$E_{Cu_{19}}^{ad}$	$V_{ind}(R_{eff})$	E_{supp}^{pred}	E ^{ad} _{supp}	Error
	$T1(T1/\alpha GY)$	-1.35	-0.26	-1.61	-1.34	-0.27
	$T2(T2-1/\alpha GY)$	-1.17	-0.28	-1.45	-1.32	-0.13
	T2(T2-2/αGY)	-1.17	-0.24	-1.41	-1.41	0.00
$Cu_{19}/\alpha GY$	$T3(T3/\alpha GY)$	-1.01	-0.19	-1.2	-1.28	0.08
	$B1(B1/\alpha GY)$	-0.97	-0.18	-1.15	-1.16	-0.01
	$H1(H1/\alpha GY)$	-0.89	-0.19	-1.08	-1.25	0.17
	MSE					-0.03
	MUE					0.11
	T1(T1/G)	-1.35	-0.46	-1.81	-1.54	-0.27
	T2(T2-1/G)	-1.17	-0.49	-1.66	-1.34	-0.32
	T2(T2-2/G)	-1.17	-0.60	-1.77	-1.40	-0.37
Cu /G	T3(T3/G)	-1.01	-0.30	-1.31	-1.40	0.09
Cu ₁₉ /O						
	B1(B1-1/G)	-0.97	-0.50	-1.47	-1.37	-0.10
	B1(B1-2/G)	-0.97	-0.49	-1.46	-1.40	-0.06
	H1(H1/G)	-0.89	-0.49	-1.38	-1.43	0.05
	MSE					-0.14
	MUE					0.18

Table S5. The values (Å) of R_{cont} , R_{cc} and r_{core} and the induction energy $V_{ind}(R_{eff})$

Adso	orption state	R _{cont}	R _{cc}	r _{core}	$V_{ind}(R_{eff})$
	$T1(T1/\alpha GY)$	3.61	6.08	3.19	-0.26
	$T2(T2-1/\alpha GY)$	3.04	5.37	2.50	-0.28
	T2(T2-2/αGY)	2.91	5.29	2.34	-0.24
$Cu_{19}/\alpha GY$	$T3(T3/\alpha GY)$	2.29	4.76	1.54	-0.19
	$B1(B1/\alpha GY)$	2.13	4.46	1.25	-0.18
	$H1(H1/\alpha GY)$	2.19	4.34	1.23	-0.19
	T1(T1/G)	3.41	5.86	2.99	-0.46
	T2(T2-1/G)	2.83	5.24	2.39	-0.49
	T2(T2-2/G)	3.20	5.55	2.86	-0.60
Cu ₁₉ /G	T3(T3/G)	2.20	4.66	1.40	-0.30
	B1(B1-1/G)	2.57	4.76	1.93	-0.50
	B1(B1-2/G)	1.90	4.09	1.25	-0.49
	H1(H1/G)	1.96	4.15	1.32	-0.49

(eV) on $\mathrm{Cu}_{19}\!/\!\alpha\mathrm{GY}$ and $\mathrm{Cu}_{19}\!/\!\mathrm{G}$ for the original induction energy model.