Supporting information

-for-

Significant influence of water molecule on the SO₃ + HCl reaction in the

gas phase and at the air-water interface

Yang Cheng^{a,‡}, Chao Ding^{a,‡}, Hui Wang^a, Tianlei Zhang^{a,*}, Rui Wang^a, Balaganesh Muthiah^b, Haitong Xu^a, Qiang Zhang^a, Min Jiang^a

^a Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China

^b Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.

Fig. S1 The optimized geometrical structures for the species of the SO₃ and HCl at several different levels of theory. The values in parentheses are the experimental values. ^a The values obtained at the MP2/6-311+G(3*d*,2*p*) level of theory; ^b The values obtained at the MP2/6-311+G(2*df*,2*pd*) level of theory, ^c The values obtained at the MP2/aug-cc-pVDZ level of theory, ^d The values obtained at the MP2/aug-cc-pVTZ level of theory, ^e The values obtained at the MP2/6-311++G(3*df*,2*pd*) level of theory; bond length is in angstrom and angle is in degree.

Table S1 Unscaled vibrational frequencies obtained at different levels

Table S2 The energy barriers (ΔE) and unsigned error (UE) (in kcal·mol⁻¹) for the SO₃ + HCl \rightarrow ClSO₃H reaction at different theoretical methods with zero-point energy (ZPE) correction

Table S3 Relative energies (ΔE and $\Delta(E + ZPE)/(kcal \cdot mol^{-1})$), enthalpies ($\Delta H/(kcal \cdot mol^{-1})$), entropy (S(298 K)/(cal \cdot mol^{-1} \cdot K^{-1})) and free energies ($\Delta G(298 \text{ K})/(kcal \cdot mol^{-1})$) for the reactants, pre-reactive complexes, transition states, post-reactive complexes and products involved in the SO₃ + HCl \rightarrow ClSO₃H reaction without and with H₂O and (H₂O)₂, as well as the hydrolysis reaction of SO₃ without and with H₂O

Table S4 Relative energies (ΔE and $\Delta(E + ZPE)/(kcal \cdot mol^{-1})$), enthalpies ($\Delta H/(kcal \cdot mol^{-1})$), entropy (S(298 K)/(cal \cdot mol^{-1} \cdot K^{-1})) and free energies ($\Delta G(298 \text{ K})/(kcal \cdot mol^{-1})$) for the reactants, pre-reactive complexes, transition states, post-reactive complexes and products involved in the SO₃ + HCl \rightarrow ClSO₃H reaction at the CCSD(T)-F12/cc-pVDZ-F12//BLYP-D3/6-311+G(3*d*,2*p*) level

Table S5 Equilibrium coefficients for the complexes of $SO_3 \cdots HCl$, $SO_3 \cdots H_2O$, $SO_3 \cdots (H_2O)_2$, $HCl \cdots H_2O$, and $HCl \cdots (H_2O)_2$ within the altitudes range of 0-50 km

^{*} Corresponding authors. Tel: +86-0916-2641083, Fax: +86-0916-2641083.

E-Mail: ztianlei88@l63.com (T. L. Zhang)

[‡] Yang Cheng and Chao Ding contributed equally to this work.

Table S6 Concentrations (molecules cm⁻³) of SO₃···HCl, SO₃···H₂O, SO₃···(H₂O)₂, HCl···H₂O, and HCl···(H₂O)₂ within the temperature range of 280-320 K

Fig. S2 Schematic energy diagrams for the hydrolysis reaction of SO₃ without (a) and with (b) H_2O at the CCSD(T)-F12/cc-pVDZ-F12//MP2/6-311+G(3*d*,2*p*) level of theory

Fig. S3 The simulated trajectories of SO_3 + HCl reaction (a), H_2O catalyzed SO_3 + HCl reaction (b), $(H_2O)_2$ catalyzed SO_3 + HCl reaction (c), SO_3 + H_2O reaction (d), and H_2O catalyzed SO_3 + H_2O reaction (e) in the gas phase

Part 1. Calculations of reaction rate coefficients

Table S7 Rate coefficient (cm³·molecule⁻¹·s⁻¹) for the SO₃ + HCl reaction without and with H₂O, and (H₂O)₂ as well as the hydrolysis of SO₃ without and with H₂O and HCl, along with the effective rate coefficient (cm³·molecule⁻¹·s⁻¹) for the SO₃ + HCl reaction with H₂O, and (H₂O)₂ as well as the hydrolysis of SO₃ with H₂O and HCl within the temperature range of 280-320 K at 0 km

Table S8 Rate coefficient (cm³·molecule⁻¹·s⁻¹) and atmospheric lifetimes (τ , s) of SO₃ for the hydrolysis of SO₃ without and with H₂O within the altitudes range of 0-50 km

Table S9 The rate coefficient for the hydrolysis of SO₃ starting from SO₃...H₂O, SO₃...H₂O +HCl reaction, the hydrolysis of SO₃ with H₂O starting from SO₃...(H₂O)₂ and SO₃...(H₂O)₂ +HCl reaction; Atmospheric lifetimes (τ , s) of SO₃...H₂O for the hydrolysis of SO₃ starting from SO₃...H₂O and the SO₃...H₂O + HCl reaction as well as the atmospheric lifetimes (τ , s) of SO₃...(H₂O)₂ for the hydrolysis of SO₃ with H₂O starting from SO₃...(H₂O)₂ and the SO₃...(H₂O)₂ + HCl reaction as well as the atmospheric lifetimes (τ , s) of SO₃...(H₂O)₂ for the hydrolysis of SO₃ with H₂O starting from SO₃...(H₂O)₂ and the SO₃...(H₂O)₂ + HCl reaction within the altitude range of 0-50 km

Fig. S4 The simulated trajectories of the formation of $ClSO_3$ -····H₃O⁺ ion pair from the reaction of SO₃, HCl and one interfacial water molecular at the air-water interface

Fig. S5 The simulated trajectories of the formation of $ClSO_3$ -····H₃O⁺ ion pair from the reaction of SO₃, HCl and two interfacial water molecular at the air-water interface

Fig. S6 The simulated trajectories of the HSO_4 -···H₃O⁺ ion pair formation from SO₃, HCl and two interfacial water molecules at the air-water interface

Fig. S7 The optimized geometrical structure for the $ClSO_3^-$ ion at the MP2/6-311+G(3d,2p) level

Fig. S8 The optimized geometrical structure for the $CISO_3^-$ ion at the MP2/6-311+G(3d,2p) level

Fig. S9 The z coordinates of $CISO_3^-$ ion as the function of simulation time (a), the density profile of water (b) and the pie chart with the occurrence percentages of $CISO_3^-$ ion (c) at the air-water interface and in water phase

Fig. S1 The optimized geometrical structures for the species of the SO₃ and HCl at several different levels of theory. The values in parentheses are the experimental values. ^a The values obtained at the MP2/6-311+G(3*d*,2*p*) level of theory; ^b The values obtained at the MP2/6-311+G(2*df*,2*pd*) level of theory, ^c The values obtained at the MP2/aug-cc-pVDZ level of theory, ^d The values obtained at the MP2/aug-cc-pVTZ level of theory, ^e The values obtained at the MP2/6-311++G(3*df*,2*pd*) level of theory; bond length is in angstrom and angle is in degree.

	SO ₃			
Method	Theoretical Frequencies	Experimental Frequencies		
	(unit: cm^{-1})	$(unit: cm^{-1})$		
MP2/6-311+G(3 <i>d</i> ,2 <i>p</i>)	494 513 513 1049 1379 1379			
MP2/6-311+G(2 <i>df</i> ,2 <i>pd</i>)	488 521 521 1053 1408 1408			
MP2/6-311++G(3 <i>df</i> ,2 <i>pd</i>)	503 523 523 1068 1421 1421	498 530 530 1065 1391 1391		
MP2/aug-cc-pVDZ	454 469 469 974 1324 1324			
MP2/aug-cc-pVTZ	480 505 505 1037 1389 1389			
	HCl			
Method	Theoretical frequencies	Experimental frequencies		
	(unit: cm^{-1})	(unit: cm^{-1})		
MP2/6-311+G(3 <i>d</i> ,2 <i>p</i>)	3026			
MP2/6-311+G(2 <i>df</i> ,2 <i>pd</i>)	3055			
MP2/6-311++G(3 <i>df</i> ,2 <i>pd</i>)	3055	2990		
MP2/aug-cc-pVDZ	3023			
MP2/aug-cc-pVTZ	3045			

Table S1 Unscaled vibrational frequencies obtained at different levels

The vibrational frequencies of SO₃ and HCl reactants among the methods of MP2/6-311+G(3d,2p), MP2/6-311+G(2df,2pd), MP2/aug-cc-pVTZ and MP2/6-311++G(3df,2pd) have been compared with the corresponding experimental values (From the NIST chemistry webbook, http://webbook.nist.gov/chemistry.). As seen in Table S3, for the species of SO₃ and HCl, the average absolute deviation between the calculated harmonic vibrational frequencies at the MP2/6-311+G(3d,2p), MP2/6-311+G(2df,2pd), MP2/aug-cc-pVTZ and MP2/6-311++G(3df,2pd) levels of theory and the corresponding experimental ones are 1.66%, 2.13%, 2.26%, 3.05% and 4.72%, respectively. This further indicates that the calculated data for the title reaction at the MP2/6-311+G(3d,2p) level of theory is acceptable as the fact that the average absolute deviation between the calculated bond distances, bond angles and vibrational frequencies at the MP2/6-311+G(3d,2p) level and the corresponding experimental values is the smallest among the five different theoretical methods.

Methods	ΔE a	ΔE^{b}	ΔE^{c}	UE
CCSD(T)-F12/cc-pVQZ-F12//MP2/6-311+G(3 <i>d</i> ,2 <i>p</i>)	-3.0	-19.0	-11.7	0.00
CCSD(T)/CBS//MP2/6-311+G(3 <i>d</i> ,2 <i>p</i>)	-3.0	18.5	-12.1	0.30
CCSD(T)-F12/cc-pVDZ-F12//MP2/6-311+G(3 <i>d</i> ,2 <i>p</i>)	-3.0	19.6	-11.3	0.30
CCSD(T)/aug-cc-pVTZ//MP2/6-311+G(3d,2p)	-3.0	19.5	-10.1	0.57
DLPNO-CCSD(T)-F12/cc-pVDZ-F12//MP2/6-311+G(3d,2p)	-2.7	19.9	-11.5	0.47
CCSD(T)/cc-pVTZ//MP2/6-311+G(3 <i>d</i> ,2 <i>p</i>)	-2.1	20.4	-8.2	2.23
CCSD(T)/aug-cc-pVDZ//MP2/6-311+G(3d,2p)	-3.0	20.4	-5.7	2.47

Table S2 The energy barriers (ΔE) and unsigned error (UE) (in kcal·mol⁻¹) for the SO₃ + HCl \rightarrow ClSO₃H reaction at different theoretical methods with zero-point energy (ZPE) correction

a, b and c respectively denote the species of pre-reactive complexes, transition states and product involved in SO₃ + HCl reaction.

Based on the MP2/6-311+G(3d,2p)-optimized geometries, single-point energy calculation was performed at a series of calculated methods of CCSD(T)-F12/cc-pVQZ-F12, CCSD(T)/CBS, CCSD(T)-F12/cc-pVDZ-F12, DLPNO-CCSD(T)-F12/cc-pVDZ-F12, CCSD(T)/aug-cc-pVTZ, CCSD(T)/aug-cc-pVDZ and CCSD(T)/cc-pVTZ. It is reported that the CCSD(T)-F12/cc-pVQZ-F12 (Mol Phys., 2010, 108, 315-325.; J. Chem. Theory. Comput., 2012, 8, 3175-3186) energy is the well-recognized "gold standard" with an accuracy better than 0.01 kcal·mol⁻¹. Thus, the single-point energy at the CCSD(T)-F12/cc-pVQZ-F12 level can be used as a benchmark for selecting the most appropriate method of calculating the energy. As seen in Table S4, the average absolute deviation between the calculated energies at the CCSD(T)/CBS, CCSD(T)-F12/cc-pVDZ-F12, DLPNO-CCSD(T)-F12/cc-pVDZ-F12, CCSD(T)/aug-cc-pVTZ, CCSD(T)/aug-cc-pVDZ and CCSD(T)/cc-pVTZ levels of theory and the corresponding CCSD(T)-F12/cc-pVQZ-F12 are 0.30 kcal·mol⁻¹, 0.30 kcal·mol⁻¹, 0.57 kcal·mol⁻¹, 0.47 kcal·mol⁻¹, 2.03 kcal·mol⁻¹ and 2.47 kcal·mol⁻¹, respectively. This further indicates that compared with the single-point energy at the CCSD(T)-F12/cc-pVQZ-F12 level, the average absolute deviation at the CCSD(T)-F12/cc-pVDZ-F12 level is the smallest in six different theoretical methods. So, the single-point energy obtained at the CCSD(T)-F12/cc-pVDZ-F12//MP2/6-311+G(3d,2p) level is reasonable and acceptable. Taking into account the computational accuracy and cost, the CCSD(T)-F12/cc-pVDZ-F12//MP2/6-311+G(3d,2p) method has been selected to optimize geometrical structures and calculate the relative energies of all the species for the title reactions.

Table S3 Relative energies (ΔE and $\Delta(E + ZPE)/(kcal \cdot mol^{-1})$), enthalpies ($\Delta H/(kcal \cdot mol^{-1})$), entropy (S(298 K)/(cal \cdot mol^{-1} \cdot K^{-1})) and free energies ($\Delta G(298 \text{ K})/(kcal \cdot mol^{-1})$) for the reactants, pre-reactive complexes, transition states, post-reactive complexes and products involved in the SO₃ + HCl \rightarrow ClSO₃H reaction without and with H₂O and (H₂O)₂, as well as the hydrolysis reaction of SO₃ without and with H₂O at the CCSD(T)-F12/cc-pVDZ-F12//MP2/6-311+G(3*d*,2*p*) level

Species	ZPE	ΔE	S	ΔG	$\Delta(E + ZPE)$	ΔH
$SO_3 + HCl$	11.9	0.0	106.1	0.0	0.0	0.0
SO ₃ ···HCl	12.7	-3.8	87.1	2.8	-3.0	-2.8
TS_{CSA}	12.2	19.2	74.3	27.9	19.6	18.4
ClSO ₃ H	16.2	-15.6	74.2	-2.9	-11.3	-12.4
$SO_3 + HCl + H_2O$	25.4	0.0	168.2	0.0	0.0	0.0
$SO_3 \cdots H_2O + HCl$	27.6	-9.6	124.9	-0.1	-7.4	-7.9
SO_3 ···HCl + H ₂ O	26.2	-3.8	149.5	2.7	-3.0	-2.8
$HCl\cdots H_2O + SO_3$	27.4	-5.3	128.9	2.6	-3.3	-4.1
SO ₃ ···HCl····H ₂ O	28.9	-12.8	98.1	5.7	-9.4	-16.6
TS_{CSA_WM}	29.6	-9.1	84.9	12.5	-5.0	-12.3
ClSO ₃ H····H ₂ O	32.0	-28.7	89.0	-5.3	-22.1	-29.4
$SO_3 + HCl + (H_2O)_2$	41.2	0.0	175.3	0.0	0.0	0.0
SO_3 ···(H ₂ O) ₂ + HCl	44.3	-16.6	135.9	-2.8	-13.5	-14.6
SO_3 ···HCl + (H ₂ O) ₂	42.0	-3.8	156.7	2.7	-3.0	-2.8
$HCl\cdots(H_2O)_2 + SO_3$	43.7	-8.7	143.4	2.2	-6.2	-7.4
SO_3 ···HCl···(H ₂ O) ₂	45.0	-17.6	111.0	4.1	-13.9	-15.1
TS_{CSA_WD}	44.6	-17.4	104.2	5.2	-14.0	-16.0
$ClSO_{3}H$ ····($H_{2}O)_{2}$	48.0	-35.7	101.1	-8.9	-29.0	-31.0
$SO_3 + H_2O$	21.1	0.0	106.6	0.0	0.0	0.0
SO ₃ ····H ₂ O	23.2	-9.6	80.3	-0.1	-7.4 (-7.6) ^a (-7.4) ^b	-7.9
TS_{SA}	21.7	16.0	70.9	25.6	16.6 (16.0) ^a (16.3) ^b	15.0
H_2SO_4	24.8	-23.7	72.2	-11.2	-20.1 (19.5) ^a (-20.36) ^b	-21.5
$SO_3 + 2H_2O$	34.7	0.0	198.0	0.0	0.0	0.0
$SO_3 + (H_2O)_2$	36.9	-5.0	167.4	2.9	-2.7 (-2.9) ^b	-3.3
SO_3 ···H ₂ O + H ₂ O	36.8	-9.6	167.9	-0.1	-7.4 (-7.4) ^b	-7.9
IM_{SA_WM}	40.0	-21.6	128.0	0.2	-16.3 (-16.6) ^b	-17.8
TS_{SA_WM}	39.0	-15.0	118.1	7.6	-10.6 (-11.1) ^b	-13.7
$H_2SO_4\cdots H_2O$	40.7	-36.2	122.9	-12.9	-30.2 (-30.68) ^b	-32.3

^a The values are reported from reference (J. Phys. Chem. A, 2019, 123, 3131-3141)

^b The values are reported from reference (Chem. Phys. Lett., 2013, 581, 26-29)

^c The values are reported from reference (J Am Chem Soc., 2012, 153, 20632-44)

Table S4 Relative energies (ΔE and $\Delta(E + ZPE)/(kcal \cdot mol^{-1})$), enthalpies ($\Delta H/(kcal \cdot mol^{-1})$), entropy (S(298 K)/(cal \cdot mol^{-1} \cdot K^{-1})) and free energies ($\Delta G(298 \text{ K})/(kcal \cdot mol^{-1})$) for the reactants, pre-reactive complexes, transition states, post-reactive complexes and products involved in the SO₃ + HCl \rightarrow ClSO₃H reaction at the CCSD(T)-F12/cc-pVDZ-F12//BLYP-D3/6-311+G(3*d*,2*p*) level

Species	ZPE	ΔE	S	ΔG	$\Delta(E + ZPE)$	ΔH
$SO_3 + HCl$	11.1	0.0	106.5	0.0	0.0	0.0
SO ₃ ····HCl	11.9	-3.7	87.1	2.8	-2.9	-2.7
TS _{CSA}	11.3	20.9	74.3	29.2	19.	19.9
ClSO ₃ H	15.1	-15.0	74.2	-2.7	-11.5	-12.0

The DFT methods were used for the BOMD simulations benchmarked against the MP2 structures and CCSD(T) energies used to map the key structures along the PES for the SO₃ + HCl reaction. Specifically, the optimized geometries and vibrational frequencies of the reactants, pre-reactive complexes, transition states (TSs), post-reactive complexes and products were calculated using the BLYP-D3 method with 6-311+G(3d,2p) basis set by Gaussian 09 A.01 packages. At the same level, intrinsic reaction coordinate (IRC) calculations were used to determine the connectivity between the TSs and the suitable pre- and post-reactant complexes. Then, single point energy calculations were performed at the CCSD(T)-F12/cc-pVDZ-F12 level using ORCA. As seen in Table S2, the energies difference between CCSD(T)-F12/cc-pVDZ-F12/MP2/6-311+G(3d,2p) and CCSD(T)-F12/cc-pVDZ-F12//BLYP-D3/6-311+G(3d,2p) levels are less than 0.4 kcal·mol⁻¹. Thus, the BLYP-D3 method was reliable to model the reaction pathway.

Altitude /km	T/K	SO ₃ …HCl	SO ₃ ····H ₂ O	SO_3 ···(H ₂ O) ₂	(H ₂ O) ₂	HCl····H ₂ O	$HCl\cdots(H_2O)_2$
	280.00	1.58×10^{-22}	3.31×10^{-20}	7.12×10^{-18}	3.60×10^{-22}	7.53×10^{-22}	2.09×10^{-21}
	290.00	1.37×10^{-22}	2.11×10^{-20}	2.99×10^{-18}	3.06×10^{-22}	6.08×10^{-22}	1.38×10^{-21}
0	298.15	1.24 × 10 ⁻²²	1.51 × 10 ⁻²⁰ (5.80 × 10 ⁻²⁰) ^a	$1.56 \times 10^{-18} \ (4.94 \times 10^{-18})^{b} \ (2.16 \times 10^{-18})^{c}$	2.71 × 10 ⁻²² (5.70 × 10 ⁻²²) ^a	$\begin{array}{c} 5.19 \times 10^{-22} \\ (5.50 \times 10^{-22})^{d} \end{array}$	1.01 × 10 ⁻²¹
	300.00	1.21×10^{-22}	1.39×10^{-20}	1.34×10^{-18}	2.63×10^{-22}	4.99×10^{-22}	9.34 × 10 ⁻²²
	310.00	1.07×10^{-22}	9.43 × 10 ⁻²¹	6.28×10^{-19}	2.29×10^{-22}	4.16×10^{-22}	6.50 × 10 ⁻²²
	320.00	9.63×10^{-23}	6.57×10^{-21}	3.10×10^{-19}	2.02×10^{-22}	3.51×10^{-22}	4.63×10^{-22}
5	259.30	2.22×10^{-22}	9.11 × 10 ⁻²⁰	5.48×10^{-17}	5.59 × 10 ⁻²¹	1.25×10^{-21}	5.59×10^{-21}
10	229.70	4.05×10^{-22}	5.92×10^{-19}	1.71×10^{-15}	2.94×10^{-20}	2.99×10^{-21}	2.94×10^{-20}
15	212.60	6.33 × 10 ⁻²²	2.19×10^{-18}	1.99×10^{-14}	9.60×10^{-20}	5.59×10^{-21}	9.60×10^{-20}
20	215.50	5.81×10^{-22}	1.71×10^{-18}	1.25×10^{-14}	7.68×10^{-20}	4.97×10^{-21}	7.68×10^{-20}
25	218.60	5.35×10^{-22}	1.35×10^{-18}	8.00×10^{-15}	6.19×10^{-20}	4.43×10^{-21}	6.19×10^{-20}
30	223.70	4.70×10^{-22}	9.18×10^{-19}	3.89×10^{-15}	4.37×10^{-20}	3.68×10^{-21}	4.37×10^{-20}
35	235.10	3.60×10^{-22}	4.19×10^{-19}	8.87×10^{-16}	2.14×10^{-20}	2.53×10^{-21}	2.14×10^{-20}
40	249.90	2.63×10^{-22}	1.61×10^{-19}	1.46×10^{-16}	8.97×10^{-21}	1.60×10^{-21}	8.97×10^{-21}
45	266.10	1.97×10^{-22}	6.61×10^{-20}	2.67×10^{-17}	3.96×10^{-21}	1.05×10^{-21}	3.96×10^{-21}
50	271.00	1.81×10^{-22}	5.12×10^{-20}	1.64×10^{-17}	3.13×10^{-21}	9.26 × 10 ⁻²²	3.13 × 10 ⁻²¹

Table S5 Equilibrium coefficients for the complexes of $SO_3 \cdots HCl$, $SO_3 \cdots H_2O$, $SO_3 \cdots (H_2O)_2$, $HCl \cdots H_2O$, and $HCl \cdots (H_2O)_2$ within the altitude range of 0-50 km

^a The value was taken from reference (J. Phys. Chem. A, 2019, 123, 3131-3141)

^b The value was taken from reference (J. Am. Chem. Soc., 2012, 134, 20632-20644)

^c The value was taken from reference (J. Phys. Chem. A, 2017, 121, 3101-3108)

^d The value was taken from reference (J. Phys. Chem. A, 2018, 122, 350-363)

Catalysts		<i>T</i> /K	280	290	298	300	310	320
Catalysis		20% RH	5.16×10^{16}	9.56×10^{16}	$1.55 imes 10^{17}$	$1.72 imes 10^{17}$	2.92×10^{17}	$4.70 imes 10^{17}$
H ₂ O ^a		40% RH	$1.03 imes 10^{17}$	1.91×10^{17}	$3.09 imes 10^{17}$	$3.43 imes 10^{17}$	5.84×10^{17}	9.40×10^{17}
		60% RH	$1.55 imes 10^{17}$	$2.87 imes 10^{17}$	4.64×10^{17}	$5.15 imes 10^{17}$	8.77×10^{17}	$1.41 imes 10^{18}$
		80% RH	$2.07 imes 10^{17}$	3.82×10^{17}	$6.18 imes 10^{17}$	6.86×10^{17}	$1.17 imes 10^{18}$	$1.88 imes 10^{18}$
		100% RH	2.58×10^{17}	4.78×10^{17}	$7.73 imes 10^{17}$	8.58×10^{17}	$1.46 imes 10^{18}$	2.35×10^{18}
		20% RH	9.59×10^{11}	2.80×10^{12}	$6.51 imes 10^{12}$	7.78×10^{12}	$1.95 imes 10^{13}$	4.45×10^{13}
		40% RH	3.82×10^{12}	$1.12 imes 10^{13}$	2.59×10^{13}	$3.10 imes 10^{13}$	$7.81 imes 10^{13}$	$1.78 imes 10^{14}$
		60% RH	8.65×10^{12}	$2.52 imes 10^{13}$	$5.83 imes 10^{13}$	$6.98 imes 10^{13}$	$1.76 imes 10^{14}$	$4.01 imes 10^{14}$
$(H_2O)_2$		80% RH	1.54×10^{13}	4.46×10^{13}	$1.03 imes 10^{14}$	$1.24 imes 10^{14}$	$3.14 imes 10^{14}$	$7.13 imes 10^{14}$
		100% RH	2.40×10^{13}	6.99 × 10 ¹³	$\begin{array}{c} 1.62 \times 10^{14} \\ (4.72 \times 10^{14})^{\rm b} \\ (4.55 \times 10^{14})^{\rm c} \end{array}$	$1.94 imes 10^{14}$	4.88×10^{14}	1.11×10^{14}
		20% RH	1.71	2.02	2.34	2.39	2.75	3.09
		40% RH	3.41	4.03	4.66	4.77	5.51	6.17
SO ₃ …H ₂ O	$[SO_3]^d$ = 10 ³	60% RH	5.13	6.06	7.00	7.16	8.27	9.26
	10	80% RH	6.85	8.06	9.32	9.54	11.0	12.3
		100% RH	8.54	10.1	11.7	11.9	13.8	15.4
		20% RH	6.83×10^{-3}	8.37×10^{-3}	1.02×10^{-2}	1.04×10^{-2}	1.23×10^{-2}	$1.38 imes 10^{-2}$
	100 H	40% RH	2.72×10^{-2}	$3.34 imes 10^{-2}$	4.04×10^{-2}	4.13×10^{-2}	4.91×10^{-2}	$5.53 imes 10^{-2}$
SO_3 ···($H_2O)_2$	$[SO_3]^{d}$ = 10 ³	60% RH	$6.16 imes 10^{-2}$	$7.54 imes 10^{-2}$	9.11×10^{-2}	9.32×10^{-2}	0.11	0.12
	10	80% RH	0.11	0.13	0.16	0.17	0.20	0.22
		100% RH	0.17	0.21	0.25	0.26	0.31	0.35
		20% RH	$3.89 imes 10^4$	$5.82 imes 10^4$	$8.04 imes 10^4$	8.59×10^4	1.21×10^5	1.65×10^5
		40% RH	$7.76 imes 10^4$	$1.16 imes 10^5$	1.60×10^{5}	$1.71 imes 10^5$	2.43×10^5	$3.30 imes 10^5$
HCl····H ₂ O	$[HCI]^e$ = 10 ⁹	60% RH	$1.17 imes 10^5$	$1.75 imes 10^5$	2.41×10^{5}	$2.57 imes 10^5$	$3.64 imes 10^5$	$4.94 imes 10^5$
	10	80% RH	$1.56 imes 10^5$	2.32×10^5	3.21×10^{5}	3.42×10^5	$4.86 imes 10^5$	$6.59 imes 10^5$
		100% RH	$1.94 imes 10^5$	$2.91 imes 10^5$	4.01×10^{5}	4.28×10^5	$6.07 imes 10^5$	$8.24 imes 10^5$
		20% RH	2.00	3.85	6.56	7.27	12.7	20.6
		40% RH	7.99	15.4	26.1	28.9	50.8	82.5
$HCl \cdots (H_2O)_2$	$[HCl]^e$	60% RH	18.1	34.7	58.7	65.2	11.5	18.6×10^2
	- 10	80% RH	32.3	61.5	1.04×10^{2}	1.16×10^2	2.04×10^2	3.30×10^2
		100% RH	50.1	96.2	1.63×10^2	1.81×10^2	3.1×10^2	$5.16 imes 10^2$

Table S6 Concentrations (molecules cm⁻³) of SO₃···HCl, SO₃···H₂O, SO₃···(H₂O)₂, HCl···H₂O, and HCl···(H₂O)₂ within the temperature range of 280-320 K at 0 km

^a The Concentrations (molecules cm⁻³) of H₂O and (H₂O)₂ values were reported from reference (J. Phys. Chem. A, 2013, 117, 10381-10396)

^b The values are reported from reference (J. Am. Chem. Soc., 2021, 143, 8402-8413)

^c The values are reported from reference (RSC Adv., 2015, 5, 17623)

^d The values are reported from reference (Proc. Natl. Acad. Sci. U.S.A., 2019;116(50):24966-24971)

^e The values are reported from reference (J. Phys. Chem. A, 2018; 122(1):350-363. J. Phys. Chem. A, 2012, 116, 4712-4719)

Fig. S2 Schematic energy diagrams for the hydrolysis reaction of SO₃ without (a) and with (b) H_2O at the CCSD(T)-F12/cc-pVDZ-F12//MP2/6-311+G(3*d*,2*p*) level of theory

Fig. S3 The simulated trajectories of SO_3 + HCl reaction (a), H_2O catalyzed SO_3 + HCl reaction (b), $(H_2O)_2$ catalyzed SO_3 + HCl reaction (c), SO_3 + H_2O reaction (d), and H_2O catalyzed SO_3 + H_2O reaction (e) in the gas phase

Part 1. Calculations of reaction rate coefficients

The kinetics for the SO₃···(H₂O)_n (n = 0-2) + HCl reaction were calculated by adopting a Master Equation Solver for Multi Energy-well Reactions (MESMER) code.¹ The SO₃···(H₂O)_n (n = 0-2) + HCl reaction begins with the formation of the pre-reactive reactant complex SO₃···(H₂O)_n···HCl (n = 0-2) through barrierless bimolecular association reactions between SO₃···(H₂O)_n (n = 0-2) and HCl, then SO₃···(H₂O)_n···HCl (n = 0-2) goes through a unimolecular transformation through the TS to form ClSO₃H···(H₂O)_n (n = 0-2).

The inverse Laplace transformation method has been used to carry out the kinetic calculations for the barrierless bimolecular reaction steps $(SO_3\cdots(H_2O)_n (n = 0.2) + HCl \rightarrow SO_3\cdots(H_2O)_n\cdots HCl (n = 0.2))$. Rate coefficients for unimolecular steps $(SO_3\cdots(H_2O)_n\cdots HCl (n = 0.2) \rightarrow ClSO_3H\cdots(H_2O)_n (n = 0.2)$ have been calculated using the Rice-Ramsperger-Kessel-Marcus (RRKM) theory as implemented in MESMER software ^[1], and has been shown in eqn. (S1) and (S2), has been shown in eqn. (S1) and eqn. (S2), respectively.

$$k(E) = \kappa \cdot \frac{\sigma m^{\neq} g_{e}^{\neq}}{\sigma^{\neq} m g_{e}} \cdot \frac{E(E - E_{0})}{h\rho(E)}$$
(S1)

$$k(\mathbf{T}) = \frac{1}{Q(\beta)} \int_0^\infty k(E) \rho(E) \exp(-\beta E) dE$$
(S2)

In eqn. (S1) and eqn. (S2), σ and σ^{\neq} are respectively the external rotational symmetry numbers for the reactants and transition state; *m* and m^{\neq} is respectively the numbers of optical isomer for the reactants and transition state; g_e and g^{\neq}_e is respectively the electronic state degeneracy for the reactants and transition state; E_0 is the reaction critical energy; $E(E - E_0)$ is the sum of states of the transition state; ρ (E) is the density of states of the reactants and $Q(\beta)$ is the corresponding canonical partition function. For the bath gas (N₂) and reactants (SO₃ and HCl), the collisional energy-transfer process was simulated in a single exponential-down model with the $\langle \Delta E_{down} \rangle = 200$ cm⁻¹. The Lennard-Jones parameters for the reaction of SO₃ ($\varepsilon/k_{\rm B} = 318.4$ K and $\sigma = 4.175$ Å) and HCl ($\varepsilon/k_{\rm B} = 344.7$ K and $\sigma = 3.339$ Å) were estimated by Gilbert and Smith method² and the parameters ($\varepsilon/k_{\rm B} = 71.4$ K and $\sigma = 3.798$ Å) of bath gas (N₂) was taken from the reference.³

Reference:

- [1] Gilbert, R.G., Smith, S.C., Theory of unimolecular and recombination reactions. 1990.
- [2] Glowacki, D.R., Liang, C.H., Morley, C., Pilling, M.J., Robertson, S.H., J. Phys. Chem. A., 2012. 116, 9545-9560.
- [3] Mai, T.V.T., Duong, M.V., Nguyen, H.T., Huynh, L.K., Phys. Chem. Chem. Phys., 2018, 20, 6677-6687

Catalysts	<i>T</i> (K)	280 K	290 K	298 K	300 K	310 K	320 K
Channel CSA	$k_{\rm CSA}$	2.16×10^{-27}	4.53 × 10 ⁻²⁷	8.20×10^{-27}	9.51 × 10 ⁻²⁷	$1.98 imes 10^{-26}$	4.07×10^{-26}
Channel CSA_WM	$k_{\rm CSA_WM}$	5.81×10^{-15}	5.23×10^{-15}	4.82×10^{-15}	4.73×10^{-15}	4.30×10^{-15}	3.93×10^{-15}
Channel CSA_WD	$k_{\rm CSA_WD}$	5.65×10^{-11}	4.90×10^{-11}	4.33×10^{-11}	3.26×10^{-11}	2.72×10^{-11}	2.26×10^{-11}
Channel SA	$k_{\rm SA}$	1.66×10^{-24}	2.18 × 10 ⁻²⁴	2.76×10^{-24} $(1.50 \times 10^{-23})^{a}$	2.94×10^{-24}	4.09×10^{-24}	5.81 × 10 ⁻²⁴
Channel SA_WM	$k_{\rm SA_WM}$	3.74×10^{-13}	3.19 × 10 ⁻¹³	2.81×10^{-13} $(1.40 \times 10^{-12})^{a}$	2.72×10^{-13}	2.32×10^{-13}	1.99 × 10 ⁻¹³

Table S7 Rate coefficient (cm³·molecule⁻¹·s⁻¹) for the SO₃ + HCl reaction without and with H₂O, and (H₂O)₂ as well as the hydrolysis of SO₃ without and with H₂O within the temperature range of 280-320 K at 0 km

 k_{CSA} , $k_{\text{CSA}_{\text{WM}}}$, $k_{\text{CSA}_{\text{WD}}}$, k_{SA} and $k_{\text{SA}_{\text{WM}}}$ are denoted the rate coefficient for the SO₃ + HCl reaction without and with H₂O, and (H₂O)₂ as well as the hydrolysis of SO₃ without and with H₂O;

^a The value was taken from reference (J. Phys. Chem. A, 2019, 123, 3131-3141)

1 Table S8 Rate coefficient (cm³·molecule⁻¹·s⁻¹) and atmospheric lifetimes (τ , s) of SO₃ for the hydrolysis of SO₃

H (km)	$T(\mathbf{K})$	p (Torr)	$[H_2O]^{a,b}$	[HCl] ^b	[HCl····H ₂ O]	$k_{\rm SA}$ (T, p)	$ au_{SA}$	$k_{\text{SA_WM}}$ (<i>T</i> , <i>p</i>)	τ_{SA_WM}
0	298.15	760.00	4.40×10^{17}	3.20×10^7	7.31×10 ³	2.76×10^{-24}	8.22×10^{5}	2.81×10^{-13}	1.22×10^{-3}
5	259.30	406.75	$1.70 imes 10^{16}$	2.10×10^7	4.46×10 ²	1.06×10^{-24}	5.55×10^{7}	5.50 × 10 ⁻¹³	6.54 × 10 ⁻²
10	229.70	202.16	$3.00 imes 10^{14}$	2.60×10^{7}	2.33×10 ¹	7.02×10^{-25}	4.75×10^{9}	9.52 × 10 ⁻¹³	1.97×10^{1}
15	212.60	91.20	1.50×10^{13}	$2.70 imes 10^8$	2.26×101	6.19× 10 ⁻²⁵	1.08×10^{11}	1.32 × 10 ⁻¹²	1.41×10^{3}
20	215.50	41.04	4.20×10^{12}	2.00×10^9	4.17×10 ¹	6.45× 10 ⁻²⁵	3.69×10^{11}	1.21 × 10 ⁻¹²	2.51×10^4
25	218.60	19.00	$2.50 imes 10^{12}$	1.30×10^9	1.44×10 ¹	6.71× 10 ⁻²⁵	$5.96 imes 10^{11}$	1.09×10^{-12}	1.01×10^{5}
30	223.70	8.36	$1.50 imes 10^{12}$	$7.90 imes 10^8$	4.36	7.07× 10 ⁻²⁵	9.43×10^{11}	9.30 × 10 ⁻¹³	4.83×10^5
35	235.10	3.80	$8.90 imes 10^{11}$	$5.10 imes 10^8$	1.15	7.87× 10 ⁻²⁵	$1.43 imes 10^{12}$	7.05×10^{-13}	$4.28 imes 10^6$
40	249.90	2.28	4.80×10^{11}	2.70×10^8	2.07×10-1	9.45× 10 ⁻²⁵	2.21×10^{12}	4.99 × 10 ⁻¹³	$5.40 imes 10^7$
45	266.10	1.06	$2.50 imes 10^{11}$	1.40×10^8	3.68×10-2	1.24× 10 ⁻²⁴	3.21×10^{12}	3.07×10^{-13}	$7.88 imes 10^8$
50	271.00	0.55	1.20×10^{11}	$7.50 imes 10^8$	8.33×10 ⁻³	1.38× 10 ⁻²⁴	$6.06 imes 10^{12}$	2.20×10^{-13}	6.17 × 10 ⁹

2 without and with H_2O within the altitudes range of 0-50 km

 $3 \quad \tau_{SA} \text{ and } \tau_{SA_WD} \text{ are atmospheric lifetimes of SO}_3 \text{ for the reactions of SO}_3 + H_2O \text{ and SO}_3 \cdots H_2O + H_2O, \text{ respectively.}$

4 ^a The value was taken from reference (J. Am. Chem. Soc., 2021, 143, 8402-8413.)

5 ^b The value was taken from reference (Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, the third revised and

6 enlarged edition, 2005.)

7

8 **Table S9** The rate coefficient for the hydrolysis of SO₃ starting from SO₃...H₂O, SO₃...H₂O +HCl reaction, the hydrolysis of SO₃ with H₂O starting from SO₃...(H₂O)₂ 9 and SO₃...(H₂O)₂ +HCl reaction; Atmospheric lifetimes (τ , s) of SO₃...H₂O for the hydrolysis of SO₃ starting from SO₃...H₂O and the SO₃...H₂O + HCl reaction as well 10 as the atmospheric lifetimes (τ , s) of SO₃...(H₂O)₂ for the hydrolysis of SO₃ with H₂O starting from SO₃...(H₂O)₂ and the SO₃...(H₂O)₂ + HCl reaction within the altitude 11 range of 0-50 km

$H(\mathrm{km})$	[H ₂ O] ^a	[HCl] ^b	\overline{k}_1	τ_1	k_2	τ_2	k_3	τ_3	k_4	$\overline{\tau}_4$
0	4.40×10^{17}	3.20×10^{7}	1.91×10^{-4}	5.23×10^{3}	1.92×10^{-16}	1.63×10^{8}	1.80×10^7	5.55×10^{-8}	2.88×10^{-13}	5.07×10^{5}
5	$1.70 imes 10^{16}$	2.10×10^7	1.45×10^{-5}	6.88×10^4	1.26×10^{-16}	$5.55 imes 10^8$	$5.98 imes 10^6$	1.67×10^{-7}	3.07×10^{-13}	8.87×10^5
10	$3.00 imes 10^{14}$	2.60×10^{7}	$2.54 imes 10^{-6}$	$3.93 imes 10^5$	8.30×10^{-17}	$4.75 imes 10^8$	$1.92 imes 10^6$	5.20×10^{-7}	3.26×10^{-13}	7.43×10^{5}
15	1.50×10^{13}	$2.70 imes 10^8$	1.04×10^{-6}	$9.59 imes 10^5$	6.16 × 10 ⁻¹⁷	1.08×10^7	$8.09 imes 10^5$	1.24×10^{-6}	3.39×10^{-13}	1.27×10^4
20	$4.20 imes 10^{12}$	2.00×10^9	$1.20 imes 10^{-6}$	8.30×10^5	6.48×10^{-17}	$3.69 imes 10^6$	$7.45 imes 10^5$	1.34×10^{-6}	3.29×10^{-13}	2.14×10^{3}
25	$2.50 imes 10^{12}$	$1.30 imes 10^9$	1.41×10^{-6}	7.09×10^5	6.81 × 10 ⁻¹⁷	$5.96 imes 10^7$	6.37×10^5	1.57×10^{-6}	3.12×10^{-13}	7.93×10^{3}
30	$1.50 imes 10^{12}$	$7.90 imes 10^8$	$1.84 imes 10^{-6}$	5.43×10^{5}	7.31×10^{-17}	9.43×10^7	5.20×10^5	1.92×10^{-6}	2.83×10^{-13}	3.21×10^{3}
35	$8.90 imes 10^{11}$	$5.10 imes 10^8$	3.43×10^{-6}	2.91×10^{5}	8.36×10^{-17}	1.43×10^7	4.62×10^5	2.17×10^{-6}	2.29×10^{-13}	1.92×10^{3}
40	$4.80 imes 10^{11}$	$2.70 imes 10^8$	8.15×10^{-6}	1.23×10^{5}	9.49×10^{-17}	2.21×10^7	4.64×10^5	2.15×10^{-6}	1.72×10^{-13}	1.60×10^4
45	$2.50 imes 10^{11}$	2.47×10^2	2.24×10^{-6}	4.47×10^4	9.61 × 10 ⁻¹⁷	3.21×10^7	3.63×10^5	2.75×10^{-6}	1.06×10^{-13}	1.72×10^4
50	$1.20 imes 10^{11}$	5.03×10^{1}	3.07×10^{-6}	3.26×10^4	8.49×10^{-17}	6.06×10^8	2.43×10^5	$4.12\times10^{\text{-}6}$	7.50×10^{-14}	1.34×10^5

12 k_1 is the rate coefficient of the hydrolysis of SO₃ starting from SO₃...H₂O, k_2 is the rate coefficient of the SO₃...H₂O +HCl reaction, k_3 is the rate coefficient of the hydrolysis of SO₃ with H₂O

13 starting from SO₃...(H₂O)₂ and k_4 is the rate coefficient of the SO₃...(H₂O)₂ +HCl reaction; τ_1 and τ_2 is the atmospheric lifetime of SO₃...H₂O for the SO₃...H₂O and SO₃...H₂O + HCl reactions,

14 respectively; τ_3 and τ_4 is the atmospheric lifetime of SO₃...(H₂O)₂ for the reactions of SO₃...(H₂O)₂ and SO₃...(H₂O)₂ + HCl, respectively.

15 ^a The values are reported from reference (J. Am. Chem. Soc., 2021, 143, 8402-8413)

16 b The values are reported from reference (Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, the third revised and enlarged edition, 2005.)

17 The atmospheric lifetimes of SO₃...H₂O for the hydrolysis of SO₃ starting from SO₃...H₂O (τ_1) and the SO₃...H₂O + HCl reaction (τ_2) have been calculated and

18 were represented as Eq. (S3) and Eq. (S4), respectively. Similarly, the atmospheric lifetimes of SO₃...(H₂O)₂ for the hydrolysis of SO₃ with H₂O starting from

19 $SO_3 \cdots (H_2O)_2$ (τ_3) and the $SO_3 \cdots (H_2O)_2$ + HCl reaction (τ_4) have been calculated and were represented as Eq. (S5) and Eq. (S6), respectively.

$$\tau_1 = \left(k_1\right)^{-1} \tag{S3}$$

$$\tau_2 = (k_2 \times [\text{HCl}])^{-1}$$
(S4)

22
$$\tau_3 = (k_3)^{-1}$$
 (S5)

23
$$\tau_4 = (k_4 \times [\text{HCl}])^{-1}$$
(S6)

Where k_1 is the rate coefficient of the hydrolysis of SO₃ starting from SO₃...H₂O, k_2 is the rate coefficient of the SO₃...H₂O +HCl reaction, k_3 is the rate coefficient of the hydrolysis of SO₃ with H₂O starting from SO₃...(H₂O)₂ and k_4 is the rate coefficient of the SO₃...(H₂O)₂ +HCl reaction; [HCl] is the concentration of HCl taken from reference.¹

28 As seen in Table S9, the value of τ_2 is larger by 2-5 orders of magnitude than τ_1 within the altitude range of 29 0-50 km. This indicates that SO₃...H₂O is hydrolyzed before it collides with HCl molecules. So, the H₂O-assisted $SO_3 + HCl$ reaction occurred through $SO_3 \cdots H_2O + HCl$ reaction is unfavorable. This is consistent with the fact that 30 31 H_2O -assisted $SO_3 + HCl$ reaction is dominated by the $HCl \cdots H_2O + SO_3$ reaction mentioned in the 3.2 section of the 32 manuscript. Similarly, the value of τ_4 is larger by 11-13 orders of magnitude than τ_3 within the altitude range of 0-50 km, revealing SO₃...(H₂O)₂ is hydrolyzed before it collides with HCl molecules. These results predict that 33 $SO_3 \cdots (H_2O)_n$ (n = 1-2) + HCl reaction is unfavorable in $(H_2O)_n$ (n = 1-2)-assisted SO_3 + HCl reaction. Thus, the 34 $SO_3 \cdots (H_2O)_n$ (n = 1-2) + HCl reactions were not considered in $(H_2O)_n$ (n = 1-2)-assisted SO_3 + HCl reaction and 35 only the HCl···(H₂O)_n + SO₃ reaction has been studied in the (H₂O)_n (n = 1-2)-assisted SO₃ + HCl reaction. 36

37 **Reference**

38 1. S. Mallick, S. Sarkar, B. Bandyopadhyay and P. Kumar, J. Phys. Chem. A, 2018, 122, 350-363.

39

Fig. S4 Snapshot structures taken from the BOMD simulations of HCl reaction at the air-water interface. The white, red and green spheres represent H, O and Cl atoms, respectively.

Fig. S5 The simulated trajectories of the formation of ClSO₃^{-•••}H₃O⁺ ion pair from the reaction of SO₃, HCl and one interfacial water molecular at the air-water interface

Fig. S6 The simulated trajectories of the formation of ClSO₃^{-•••}H₃O⁺ ion pair from the reaction of SO₃, HCl and two interfacial water molecular at the air-water interface

Fig. S7 The simulated trajectories of the $HSO_4^{-\cdots}H_3O^+$ ion pair formation from SO_3 , HCl and two interfacial water molecules at the air-water interface

Fig. S8 The optimized geometrical structure for the $ClSO_3^-$ ion at the MP2/6-311+G(3d,2p) level

Fig. S9 The z coordinates of $ClSO_3^-$ ion as the function of simulation time (a), the density profile of water (b) and the pie chart with the occurrence percentages of $ClSO_3^-$ ion (c) at the air-water interface and in water phase