Supporting Information

Effect of four-phonon interaction on phonon thermal conductivity of

hexagonal VTe2 and puckered pentagonal VTe2

Dan Jin,^a Pan Zhang,^a Zhixue Tian,^b Zhenhua Zhang,^c Youyuan Yuan,^d Yong Liu^a, Zhihong Lu^c and Rui Xiong^{*a} ^aKey Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China ^bHebei Key Laboratory of Photophysics Research and Application, College of Physics, Hebei Normal University, Shijiazhuang, 050024, China ^cSchool of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China ^dWuhan Britain-China School, Wuhan 430030, People's Republic of China

* Corresponding author: xiongrui@whu.edu.cn

Fig. S1. Convergence tests of the Q-grid for (a) H-VTe₂ monolayer and (b) PP-VTe₂ monolayer.

Fig. S2. Grüneisen parameter of (a) $H-VTe_2$ monolayer and (b) $PP-VTe_2$ monolayer.

Fig. S3. Electron localization functions of (a) H-VTe₂ monolayer and (b-c) PP-VTe₂ monolayer.