Supporting Information

for

Structural stability, electronic and mechanical properties of nitrogen and boron doped fluorinated diamane

Lilin Gao^a, Yaning Liu^a, Yaqi Liang^a, Nan Gao^{a,b*}, Junsong Liu^{a*}, Hongdong Li^{a,b*} ^aState Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China ^bShenzhen Research Institute, Jilin University, Shenzhen 518057, China

Corresponding Authors

Email address: gaon@jlu.edu.cn, jsliu@jlu.edu.cn, hdli@jlu.edu.cn

structures	formation energy (eV)
F-diamane	-0.545
FD-1N	-0.528
FD-3N	-0.539
FD-1B	-0.539
FD-2B	-0.555
FD-3B	-0.533

Table S1 Formation energies of pristine F-diamane and F-diamane with dopants.

Fig. S1 Convergence test of plane wave cutoff energy and k-points.

Fig. S2 (a) Top and (b) side views of F-diamane with $4 \times 4 \times 1$ supercell. The interlayer separation and C-C bond lengths are labeled.

Fig. S3 Electron localization function of (a) FD-2N, (b) FD-3N and (c) FD-2B structures. The red (blue) regions represent the localized (delocalized) electronic states.

Fig. S4 Charge density of CBM and VBM at Γ point for (a) F-diamane, (b) FD-3N, (c) FD-1B, (d) FD-2B structures with an isosurface level of 0.002 e/Å³.

CBM and VBM for FD-3N, FD-1B, FD-2B structures are nearly the same as pristine F-diamane, except the slight contribution of B dopants in VBM for FD-1B and FD-2B structures.