Exploring the Effect of C_6H_{5-x}/F_xBr (x=0~3) Passivating Agent on Surface Properties at Different Termination: First principles

Changcheng Chen^{a,*}, Yan Cai^a, Yirui Zhang^b, Ziyi Zhang^a, Songya Wang^a, Shuli Gao^a, Wen Chen^a, Shuangna Guo^a, Elyas Abduryim^a, Chao Dong^c, Xiaoning Guan^{c,*}, Ying Liu^d, Pengfei Lu^{c,*}

^a School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China.

b School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, 100080, China.

c State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China.

d School of physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.

Fig. S1. Passivation models for different terminals of perovskite. (a)-(d) represents the addition of BrPFB, 4-F-BrB, 2-4-6-F-BrB and 2-6-F-BrB on the PbI2-terminated surface. (e)-(h) represents the addition of 4-F-BrF, 4-Br-BrF, BrB and 2-4-6-F-BrB on the MAI-terminated surface.

^{*} Corresponding authors E-mail addresses: <u>chenchangcheng@xauat.edu.cn</u>(C. Chen), <u>guanxn@bupt.edu.cn</u>(X. Guan), <u>photon.bupt@gmail.com</u> (P. Lu).

Fig. S2. The side view of the electron localization function at PbI₂ and MAI terminated surface, (a)-(f) adsorbed BrB, BrPFB, 4-F-BrB, 4-Br-FB, 2-4-6-F-BrB, and 2-6-F-BrB, respectively. The threshold range of the contour line is [0 (blue), 1 (red)], where 1 represents complete positioning and 0 represents incomplete positioning.

Fig. S3. The partial densities of states at the MAI-terminated surface with the addition of BrB, BrPFB, 4-F-BrB, 4-Br-FB, 2-4-6-F-BrB, and 2-6-F-BrB, respectively.

Fig. S4. The partial densities of states at the PbI₂-terminated surface with the addition of BrB, BrPFB, 4-F-BrB, 4-Br-FB, 2-4-6-F-BrB, and 2-6-F-BrB, respectively.

Fig. S5. Band structures is displayed at the MAI-terminated surface with the addition of BrB, BrPFB, 4-F-BrB, 4-Br-FB, 2-4-6-F-BrB, and 2-6-F-BrB, respectively.

Fig. S6. Band structures is displayed at the PbI₂-terminated surface with the addition of BrB, BrPFB, 4-F-BrB, 4-Br-FB, 2-4-6-F-BrB, and 2-6-F-BrB, respectively.

Table S1. The energy values of LUMO and HOMO of different molecules and the energy values of global reaction activity.

Molecule	HOMO(eV)	LUMO(eV)	ΔE(eV)
BrB	-6.05	-1.51	4.55
BrPFB	-6.75	-2.44	4.31
4-Br-FB	-6.07	-1.85	4.22
2-4-6-F-BrB	-6.39	-1.90	4.49
2-6-F-BrB	-6.35	-1.85	4.50

Charge	BrB	BrPFB	4-F-BrB	4-Br-FB	2-4-6-F-BrB	2-6-F-BrB
Molecule	0.073	0.008	0.186	0.185	0.066	0.161
Pb	0.855	-0.858	-0.842	-0.851	-0.844	-0.847
Ι	0.569	-0.567	0.566	0.567	0.564	0.566
Molecule	0.055	0.005	0.203	0.284	-0.030	0.160
РЬ	-0.900	-0.894	-0.892	-0.883	-0.893	-0.916
Ι	0.553	0.545	0.547	0.548	0.547	0.188
	Molecule Pb I Molecule Pb I I	Charge BrB Molecule 0.073 Pb 0.855 I 0.569 Molecule 0.055 Pb -0.900 I 0.553	Charge BrB BrPFB Molecule 0.073 0.008 Pb 0.855 -0.858 I 0.569 -0.567 Molecule 0.055 0.005 Pb -0.900 -0.894 I 0.553 0.545	ChargeBrBBrPFB4-F-BrBMolecule0.0730.0080.186Pb0.855-0.858-0.842I0.569-0.5670.566Molecule0.0550.0050.203Pb-0.900-0.894-0.892I0.5530.5450.547	ChargeBrBBrPFB4-F-BrB4-Br-FBMolecule0.0730.0080.1860.185Pb0.855-0.858-0.842-0.851I0.569-0.5670.5660.567Molecule0.0550.0050.2030.284Pb-0.900-0.894-0.892-0.883I0.5530.5450.5470.548	ChargeBrBBrPFB4-F-BrB4-Br-FB2-4-6-F-BrBMolecule0.0730.0080.1860.1850.066Pb0.855-0.858-0.842-0.851-0.844I0.569-0.5670.5660.5670.564Molecule0.0550.0050.2030.284-0.030Pb-0.900-0.894-0.892-0.883-0.893I0.5530.5450.5470.5480.547

Table S2. Bader changes on the MAI- and PbI_2 - terminated surface, for passivatedmolecules, undercoordinated Pb, and I atoms.

Table S3 Electron (m_e) and hole (m_h) effective masses, the reduced effective mass(μ), high-frequency dielectric constants (ε) and exciton binding energies (E_g) on the different terminations after adding passivators and the intrinsic structure.

Terminate	Compounds	m _e ((m ₀)	m_h ((m ₀)	μ	ε	Eb (meV)
		Γ-Χ	Г–М	Γ-Χ	Г–М			
MAI	Cell	0.665	0.280	0.239	0.168	0.142	2.414	0.332
				m*=0.	.11me			
	BrB	0.724	0.274	0.245	0.165	0.145	2.674	0.276
	BrPFB	0.825	0.280	0.267	0.167	0.156	2.697	0.292
	4-F-BrB	0.748	0.279	0.240	0.168	0.146	2.663	0.2801
	4-Br-FB	0.834	0.278	0.249	0.165	0.151	2.678	0.287
	2-4-6-F-BrB	0.888	0.279	0.255	0.165	0.154	2.687	0.290
	2-6-F-BrB	0.788	0.278	0.252	0.165	0.150	2.680	0.284
PbI ₂	Cell	0.975	0.248	0.325	0.562	0.257	4.433	0.178
	BrB	0.724	0.274	0.245	0.165	0.145	3.170	0.196
	BrPFB	0.825	0.280	0.267	0.167	0.156	3.334	0.191
	4-F-BrB	0.748	0.279	0.240	0.168	0.146	3.231	0.190
	4-Br-FB	0.834	0.278	0.250	0.165	0.151	3.163	0.205
	2-4-6-F-BrB	0.888	0.279	0.255	0.165	0.154	3.305	0.192
	2-6-F-BrB	0.788	0.278	0.252	0.165	0.150	3.302	0.187

Fig. S7. The surface work function of the intrinsic structure and the electron affinity potential(EA) after adsorbing BrB, 4-F-BrB, 4-Br-FB and 2-4-6-F-BrB on the MAI-terminated surface and adsorbing BrPFB, 4-F-BrB, 2-4-6-F-BrB, and 2-6-F-BrB on the PbI2-terminated surface.

Fig. S8. (a) and (b) are the average planar potentials for adsorbing BrPFB at the PbI_{2} -terminated and MAI-terminated surfaces, respectively. Blue refers to adding dipole correction during calculation, while red refers to using DFT instead of adding dipole correction during calculation.

Fig. S9. The difference in the planar average potential calculated using dipole correction in the adsorption of small molecules with different F contents at the PbI₂-terminated surfaces. Blue refers to adding dipole correction during calculation, while red refers to using DFT instead of adding dipole correction during calculation.

Fig. S10. The difference in the planar average potential calculated using dipole correction in the adsorption of small molecules with different F contents at the MAI-terminated surfaces. Blue refers to adding dipole correction during calculation, while red refers to using DFT instead of adding dipole correction during calculation.