Supporting Information

Effect of oxygen vacancy electronic state on Ni migration in Li_{0.5}(Ni_{0.8}Mn_{0.1}Co_{0.1})O₂ cathode material: a first-principles study

Ravanny W. M. Komalig^a, Ganes Shukri^{a,b,*}, Mohammad Kemal Agusta^{a,b}, Muhammad Haris Mahyuddin^{a,b}, Afriyanti Sumboja^c, Adhitya Gandaryus Saputro^{a,b},Ryo Maezono^d, Ahmad Nuruddin^{a,b}, Hermawan Kresno Dipojono^{a,b}

^aAdvanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia

^bResearch Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia

^cMaterials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung 40132, West Java, Indonesia

^dSchool of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

Figure S1. (a) and (b), band-decomposed density of states profile of all atoms at 100% and 50% lithation respectively. (c) and (d) density of states of all Ni(d) decomposed to each oxidation state (+2, +3 and +4) at 100% and 50% lithation respectively.

Figure S2. Minimum energy path of (a) Ni, (b) Co and (c) Mn calculated using CI-NEB. 3 images were employed for both Ni(${}^{O}_{h,TM} \rightarrow T_{d}$) and Ni(${}^{T_{d}} \rightarrow O_{h,Li}$). 5 images were employed for Co(${}^{O}_{h,TM} \rightarrow T_{d}$) to account simultaneous Li diffusion to ${}^{T}_{h,Li}$ and 3 images were employed for Co(${}^{T_{d}} \rightarrow O_{h,Li}$). 7 images were employed for direct Mn(${}^{O}_{h,TM} \rightarrow O_{h,Li}$) because ${}^{T_{d}}$ sites are found to be unstable for Mn to occupy.

Figure S3. Minimum energy path of Ni diffusion next to a vacancy in shared plane of diffusion (O1) at (a) neutral, (b) (+1)- and (c) (+2)-charge states calculated using CI-NEB. 3 images were employed for both Ni(${}^{O}_{h,TM} \rightarrow T_{d}$) and Ni(${}^{T_{d}} \rightarrow O_{h,Li}$) at all charge states.

Figure S4. Minimum energy path of Ni diffusion next to a vacancy opposing the plane of diffusion (O2) at (a) neutral, (b) (+1)- and (c) (+2)-charge states calculated using CI-NEB. 3 images were employed for both Ni(${}^{O}_{h,TM} \rightarrow T_d$) and Ni(${}^{T}_{d} \rightarrow O_{h,Li}$) at all charge states.

Configuration	DFT+ $U(eV)$		DFT+U+D3 (eV)	
	01	02	01	02
FS1	-0,527	-0,841	-0,334	-0,439
FS2	-0,019	-0,192	-0,490	-0,347

Table S1. Calculated Ni migration energy in neutral O_{vac} -contained Li_{0.5}NMC811 without and with dispersion correction. The 'O1' and 'O2' notation refer to the location of O_{vac} with respect the normal plane of the dislocated Ni (see **Figure 5** of the main manuscript). The values and notation of FS refers to the "Final State" (of DFT+*U* results) as tabulated in the **Figure 6** in the main manuscript.