Supporting Information

The Anisotropic Structure Deformation of β-Octahydro-1,3,5,7tetranitro-1,3,5,7-tetrazocine under High Pressure: A Vibration Spectra Calculation and Resolving Based on AIMD Simulation

Yao-Yao Huang,^{1,2} Zheng-Hua He, ^{1,*} and Guang-Fu Ji¹

¹National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics,

China Academy of Engineering Physics, Mianyang 621900, Sichuan, China.

²Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development center,

Mianyang 621000, Sichuan, China.

Fig. S1 Pressure and total energy evolution versus simulation time.

Raman	Vibration mode	Raman	Vibration mode
118	τ(ring)	1028	τ(ring)
143		1059	$\tau(ring) + \gamma(NO_{2-axial})$
155	$\tau(ring)+\tau(NO_2)$	1128	$\tau(ring) + \rho(CH_2)$
181		1170	τ(ring)
211	τ(ring)	1179	$\tau(ring)+\nu(NO_{2-axial})$
221	$\tau(ring) + \gamma(NO)$	1202	$\nu(NO_{2-equatorial}) + \rho(CH_2)$
285 🧲	$t(\operatorname{Im} g) + \gamma(\operatorname{IvO}_2)$	1251	
295		1324	$\nu(ring)+\gamma(NO_2)+\delta(CH_2)$
354	$\tau/\nu(ring)$	1401	
428		1451	$v_{as}(NO_{2-equatorial})+\omega(CH_2)$
460	$\gamma(NO_2)$	1532	» (NO-)
493 📘	$\tau(ring)+\gamma(NO_2)$	1623 $\int V_{as}(NO_2)$	
603		1683	$\tau(ring)+\gamma(NO_2)$
642	$\gamma(NO_2)$	۲ 1900	v (NO ₂ · · ·)
702	$\tau(ring)+\gamma(NO_2)$	1926 🦵	Vas(1002-axial)
783	$\tau(ring)+\gamma(NO_2)+\gamma(C$	3109	<i>v</i> _s (CH ₂)
	H ₂)		
829	$\tau(ring) + \nu(NO_{2\text{-axial}})$	3163	v (CH ₂)
879	τ(ring)	3222	$v_{as}(CH2)$
902	$\tau(ring)+\gamma(NO_2)$		

Tab. 1 Vibrational modes for Raman frequencies.

v: stretching vibration; δ : deformation vibration; τ : torsional vibration; γ : ring structural deformation and combined with adjacent non-ring bond; ω : wag out of plane; ρ : rocking in plane; as: anti-symmetric; s: symmetric.