Supplementary information for 'Prediction of Superconductivity in Sandwich XB₄ (X=Li, Be, Zn and Ga) Films'

Shuming Zeng,^{1,*} Yinchang Zhao,² Muhammad Zulfiqar,^{3,†} and Geng Li^{4,5,‡}

¹College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
²Department of Physics, Yantai University, Yantai 264005, People's Republic of China
³Department of Physics, University of Sargodha, 40100 Sargodha, Pakistan
⁴School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, China.
⁵National Supercomputer Center in Tianjin, Tianjin 300457, China. (Dated: September 21, 2023)

 $^{^{\}ast}$ zengsm@yzu.edu.cn

 $^{^{\}dagger}$ muhammadżulfiqar@uos.edu.pk

 $^{^{\}ddagger}$ ligeng@nscc-tj.cn

FIG. S1. Schematic diagram of the phonon modes of LiB_4 at the Γ point. ω and ν are the frequency and phonon band index, respectively. The length of the arrows is proportional to the amplitude of vibration. The top is the top view and the bottom is the side view in each subgraph.

FIG. S2. Schematic diagram of the phonon modes of BeB_4 at the Γ point. ω and ν are the frequency and phonon band index, respectively. The length of the arrows is proportional to the amplitude of vibration. The top is the top view and the bottom is the side view in each subgraph.

FIG. S3. Schematic diagram of the phonon modes of ZnB_4 at the Γ point. ω and ν are the frequency and phonon band index, respectively. The length of the arrows is proportional to the amplitude of vibration. The top is the top view and the bottom is the side view in each subgraph.

FIG. S4. Schematic diagram of the phonon modes of GaB_4 at the Γ point. ω and ν are the frequency and phonon band index, respectively. The length of the arrows is proportional to the amplitude of vibration. The top is the top view and the bottom is the side view in each subgraph.

k-mesh	λ	$T_c^{\mu^*=0.10}(K)$	Times (hour)
$18 \times 18 \times 1$	1.23	38.69	15.11
$36 \times 36 \times 1$	1.24	38.77	41.45
$48 \times 48 \times 1$	1.24	38.76	103.64
$60{\times}60{\times}1$	1.24	38.76	184.56

TABLE SI. The convergence tests for the k-mesh (ZnB_4) . Each test using 96 cores.

FIG. S5. Superconducting transition temperature T_c (magenta), EPC constant λ (royal), DOS of the FS N(E_f) (wine), and logarithmically averaged phonon frequency ω_{log} (orange) versus the strain ε for the sandwitched ZnB₄ film.

I. SCRIPT FOR T_c CALCULATION

1. Script to calculate electron-phonon coefficients

```
cat > elph.in <<eof
phonons of ZnB4
&inputph
  tr2_ph=1.0d-14, !!! effect phonon quality
  prefix=' ZnB4',
  fildvscf='ZnB4dv',
  amass(1)=65.409,
  amass(2)=10.811,
  outdir='./',
  fildyn='ZnB4.dyn',
  electron_phonon='interpolated',
  el_ph_sigma=0.005,
  el_ph_nsigma=10,
  alpha_mix=0.3,
  trans=.true.,
  Idisp=.true.,
  nq1=9, nq2=9, nq3=1
/
```

```
eof
```

mpirun -np 96 ph.x < elph.in > elph.out

- 2. Script to calculate \$T_c\$
 - cat > tc.in <<eof

30 0.5 1 ! emax (something more than highest phonon mode in THz), degauss, smearing method

12 ! Number of q-points for which EPC is calculated,

0.0000000	0.0000000	0.0000000	1					
0.0000000	0.1283001	0.0000000	6					
0.0000000	0.2566001	0.0000000	6					
0.0000000	0.3849002	0.0000000	6					
0.0000000	0.5132002	0.0000000	6					
0.1111111	0.1924501	0.0000000	6					
0.1111111	0.3207501	0.0000000	12					
0.1111111	0.4490502	0.0000000	12					
0.1111111	0.5773503	0.0000000	6					
0.2222222	0.3849002	0.0000000	6					
0.2222222	0.5132002	0.0000000	12					
0.3333333	0.5773503	0.0000000	2					
elph_dir/elph.inp_lambda.1								
elph_dir/elph.inp_lambda.2								
elph_dir/elph.inp_lambda.3								
elph_dir/elph.inp_lambda.4								
elph_dir/elph.inp_lambda.5								
elph_dir/elph.inp_lambda.6								

```
elph_dir/elph.inp_lambda.7
elph_dir/elph.inp_lambda.8
elph_dir/elph.inp_lambda.9
elph_dir/elph.inp_lambda.10
elph_dir/elph.inp_lambda.11
elph_dir/elph.inp_lambda.12
0.10 !\
```

! \mu the Coloumb coefficient in the modified ! Allen-Dynes formula for T_c (via \omega_log)

eof

```
lambda.x < elph.in > elph.out
```

3. Output for \$T_c\$ calculation

1ambda	= 1.683100 (1.682938)	<log< th=""><th>w>=</th><th>437.273</th><th>K</th><th>N(Ef) =</th></log<>	w>=	437.273	K	N(Ef) =	
11.565178 at degauss= 0.005									
1ambda	= 1.318463 (1.318304)	<log< td=""><td>w>=</td><td>420.748</td><td>K</td><td>N(Ef) =</td></log<>	w>=	420.748	K	N(Ef) =	
9.286085 at	degauss= 0.010								
1ambda	= 1.254620 (1.254468)	<log< td=""><td>w>=</td><td>416.215</td><td>K</td><td>N(Ef) =</td></log<>	w>=	416.215	K	N(Ef) =	
8.963193 at	degauss= 0.015								
1ambda	= 1.241619 (1.241492)	<log< td=""><td>w>=</td><td>415.578</td><td>K</td><td>N(Ef) =</td></log<>	w>=	415.578	K	N(Ef) =	
8.974573 at	degauss= 0.020								
1ambda	= 1.234089 (1.233998)	<log< td=""><td>w>=</td><td>416.056</td><td>K</td><td>N(Ef) =</td></log<>	w>=	416.056	K	N(Ef) =	
9.021735 at	degauss= 0.025								
1ambda	= 1.228656 (1.228600)	<log< td=""><td>w>=</td><td>416.901</td><td>K</td><td>N(Ef) =</td></log<>	w>=	416.901	K	N(Ef) =	
9.085480 at	degauss= 0.030								
1ambda	= 1.226354 (1.226326)	<log< td=""><td>W>=</td><td>417.733</td><td>K</td><td>N(Ef) =</td></log<>	W>=	417.733	K	N(Ef) =	
9.175427 at	degauss= 0.035								
lambda	= 1.226925 (1.226919)	$\leq \log$	W>=	418.260	K	N(Ef) =	
9.289254 at	degauss= 0.040								
lambda	= 1.228852 (1.228868)	<log< td=""><td>w>=</td><td>418.361</td><td>K</td><td>N(Ef) =</td></log<>	w>=	418.361	K	N(Ef) =	
9.415892 at	degauss= 0.045								
1ambda	= 1.230448 (1.230489)	<log< td=""><td>w>=</td><td>418.016</td><td>K</td><td>N(Ef) =</td></log<>	w>=	418.016	K	N(Ef) =	
9.543561 at	degauss= 0.050								
lambda	omega_log	Т_с	С						
1.68310	437.273		55	5.214					
1. 31846 420. 748		42.036							
1. 25462 416. 215		39.306							
1. 24162 415. 578		38.768							
1. 23409 416. 056		38.534							
1. 22866 416. 901		38.409							
1. 22635 417. 733		38.399							
1. 22692 418. 260		38.469							
1. 22885 418. 361		38. 551							
1. 23045 418. 016		38.579							